Suppr超能文献

被迫交流:形态发生中机械和生化信号的整合。

Forced to communicate: Integration of mechanical and biochemical signaling in morphogenesis.

机构信息

Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA.

School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.

出版信息

Curr Opin Cell Biol. 2020 Oct;66:59-68. doi: 10.1016/j.ceb.2020.05.004. Epub 2020 Jun 20.

Abstract

Morphogenesis is a physical process that requires the generation of mechanical forces to achieve dynamic changes in cell position, tissue shape, and size as well as biochemical signals to coordinate these events. Mechanical forces are also used by the embryo to transmit detailed information across space and detected by target cells, leading to downstream changes in cellular properties and behaviors. Indeed, forces provide signaling information of complementary quality that can both synergize and diversify the functional outputs of biochemical signaling. Here, we discuss recent findings that reveal how mechanical signaling and biochemical signaling are integrated during morphogenesis and the possible context-specific advantages conferred by the interactions between these signaling mechanisms.

摘要

形态发生是一个物理过程,需要产生机械力来实现细胞位置、组织形状和大小的动态变化,以及协调这些事件的生化信号。胚胎也利用机械力在空间中传递详细信息,并被靶细胞检测到,从而导致细胞特性和行为的下游变化。事实上,力提供了互补质量的信号信息,既可以协同又可以多样化生化信号的功能输出。在这里,我们讨论了最近的发现,这些发现揭示了在形态发生过程中机械信号和生化信号是如何整合的,以及这些信号机制之间的相互作用赋予的可能特定于上下文的优势。

相似文献

1
Forced to communicate: Integration of mechanical and biochemical signaling in morphogenesis.
Curr Opin Cell Biol. 2020 Oct;66:59-68. doi: 10.1016/j.ceb.2020.05.004. Epub 2020 Jun 20.
2
Mechanical force sensing in tissues.
Prog Mol Biol Transl Sci. 2014;126:317-52. doi: 10.1016/B978-0-12-394624-9.00013-0.
3
Mechanical control of tissue shape: Cell-extrinsic and -intrinsic mechanisms join forces to regulate morphogenesis.
Semin Cell Dev Biol. 2022 Oct;130:45-55. doi: 10.1016/j.semcdb.2022.03.017. Epub 2022 Mar 30.
5
Force transduction by cadherin adhesions in morphogenesis.
F1000Res. 2019 Jul 10;8. doi: 10.12688/f1000research.18779.1. eCollection 2019.
6
Control of cellular responses to mechanical cues through YAP/TAZ regulation.
J Biol Chem. 2019 Nov 15;294(46):17693-17706. doi: 10.1074/jbc.REV119.007963. Epub 2019 Oct 8.
7
Using cell deformation and motion to predict forces and collective behavior in morphogenesis.
Semin Cell Dev Biol. 2017 Jul;67:161-169. doi: 10.1016/j.semcdb.2016.07.029. Epub 2016 Aug 2.
8
Tissue interplay during morphogenesis.
Semin Cell Dev Biol. 2023 Sep 30;147:12-23. doi: 10.1016/j.semcdb.2023.03.010. Epub 2023 Mar 29.
9
"Feeling the force" in reproduction: Mechanotransduction in reproductive processes.
Connect Tissue Res. 2016 May;57(3):236-44. doi: 10.3109/03008207.2016.1146715. Epub 2016 Apr 12.
10
Pulling together: Tissue-generated forces that drive lumen morphogenesis.
Semin Cell Dev Biol. 2016 Jul;55:139-47. doi: 10.1016/j.semcdb.2016.01.002. Epub 2016 Jan 8.

引用本文的文献

1
Biomechanical control of vascular morphogenesis by the surrounding stiffness.
Nat Commun. 2025 Jul 28;16(1):6788. doi: 10.1038/s41467-025-61804-z.
2
Decoding force-transmission linkages for therapeutic targeting and engineering.
APL Bioeng. 2025 Jun 13;9(2):021504. doi: 10.1063/5.0267032. eCollection 2025 Jun.
4
Amoeboid cells undergo durotaxis with soft end polarized NMIIA.
Elife. 2024 Dec 13;13:RP96821. doi: 10.7554/eLife.96821.
5
Diversity of Intercellular Communication Modes: A Cancer Biology Perspective.
Cells. 2024 Mar 12;13(6):495. doi: 10.3390/cells13060495.
6
Forceful patterning: theoretical principles of mechanochemical pattern formation.
EMBO Rep. 2023 Dec 6;24(12):e57739. doi: 10.15252/embr.202357739. Epub 2023 Nov 2.
7
From the membrane to the nucleus: mechanical signals and transcription regulation.
Biophys Rev. 2023 Aug 2;15(4):671-683. doi: 10.1007/s12551-023-01103-3. eCollection 2023 Aug.
10
Materials science and mechanosensitivity of living matter.
Appl Phys Rev. 2022 Mar;9(1):011320. doi: 10.1063/5.0071648.

本文引用的文献

1
Spatial mapping of tissue properties in vivo reveals a 3D stiffness gradient in the mouse limb bud.
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4781-4791. doi: 10.1073/pnas.1912656117. Epub 2020 Feb 18.
5
Genetic induction and mechanochemical propagation of a morphogenetic wave.
Nature. 2019 Aug;572(7770):467-473. doi: 10.1038/s41586-019-1492-9. Epub 2019 Aug 15.
8
Organization of Embryonic Morphogenesis via Mechanical Information.
Dev Cell. 2019 Jun 17;49(6):829-839.e5. doi: 10.1016/j.devcel.2019.05.014. Epub 2019 Jun 6.
10
Feather arrays are patterned by interacting signalling and cell density waves.
PLoS Biol. 2019 Feb 21;17(2):e3000132. doi: 10.1371/journal.pbio.3000132. eCollection 2019 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验