Suppr超能文献

冗余磷酸酶调控细菌细胞周期进程。

Regulation of Bacterial Cell Cycle Progression by Redundant Phosphatases.

机构信息

Bacterial Cell Cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur, Belgium.

Infection Biology, Biozentrum, University of Basel, Basel, Switzerland.

出版信息

J Bacteriol. 2020 Aug 10;202(17). doi: 10.1128/JB.00345-20.

Abstract

In the model organism , a network of two-component systems involving the response regulators CtrA, DivK, and PleD coordinates cell cycle progression with differentiation. Active phosphorylated CtrA prevents chromosome replication in G cells while simultaneously regulating expression of genes required for morphogenesis and development. At the G-S transition, phosphorylated DivK (DivK∼P) and PleD (PleD∼P) accumulate to indirectly inactivate CtrA, which triggers DNA replication initiation and concomitant cellular differentiation. The phosphatase PleC plays a pivotal role in this developmental program by keeping DivK and PleD phosphorylation levels low during G, thereby preventing premature CtrA inactivation. Here, we describe CckN as a second phosphatase akin to PleC that dephosphorylates DivK∼P and PleD∼P in G cells. However, in contrast to PleC, no kinase activity was detected with CckN. The effects of CckN inactivation are largely masked by PleC but become evident when PleC and DivJ, the major kinase for DivK and PleD, are absent. Accordingly, mild overexpression of restores most phenotypic defects of a null mutant. We also show that CckN and PleC are proteolytically degraded in a ClpXP-dependent way before the onset of the S phase. Surprisingly, known ClpX adaptors are dispensable for PleC and CckN proteolysis, raising the possibility that as yet unidentified proteolytic adaptors are required for the degradation of both phosphatases. Since expression is induced in stationary phase, depending on the stress alarmone (p)ppGpp, we propose that CckN acts as an auxiliary factor responding to environmental stimuli to modulate CtrA activity under suboptimal conditions. Two-component signal transduction systems are widely used by bacteria to adequately respond to environmental changes by adjusting cellular parameters, including the cell cycle. In , PleC acts as a phosphatase that indirectly protects the response regulator CtrA from premature inactivation during the G phase of the cell cycle. Here, we provide genetic and biochemical evidence that PleC is seconded by another phosphatase, CckN. The activity of PleC and CckN phosphatases is restricted to the G phase since both proteins are degraded by ClpXP protease before the G-S transition. Degradation is independent of any known proteolytic adaptors and relies, in the case of CckN, on an unsuspected N-terminal degron. Our work illustrates a typical example of redundant functions between two-component proteins.

摘要

在模式生物中,一个涉及两个组件系统的网络,包括反应调节剂 CtrA、DivK 和 PleD,协调细胞周期进程与分化。活性磷酸化的 CtrA 阻止 G 细胞中的染色体复制,同时调节形态发生和发育所需的基因表达。在 G1-S 过渡期间,磷酸化的 DivK(DivK∼P)和 PleD(PleD∼P)积累,间接使 CtrA 失活,从而触发 DNA 复制起始和伴随的细胞分化。磷酸酶 PleC 在这个发育程序中起着关键作用,因为它在 G 期保持 DivK 和 PleD 的磷酸化水平低,从而防止过早的 CtrA 失活。在这里,我们将 CckN 描述为一种类似于 PleC 的第二种磷酸酶,它可以使 G 细胞中的 DivK∼P 和 PleD∼P 去磷酸化。然而,与 PleC 不同的是,没有检测到 CckN 的激酶活性。CckN 失活的影响在很大程度上被 PleC 掩盖,但当 PleC 和 DivJ(DivK 和 PleD 的主要激酶)缺失时,这种影响就变得明显了。因此,过表达 可以恢复 缺失突变体的大部分表型缺陷。我们还表明,CckN 和 PleC 在 ClpXP 依赖性方式下在 S 期开始前被蛋白水解降解。令人惊讶的是,已知的 ClpX 衔接蛋白对于 PleC 和 CckN 的蛋白水解是可有可无的,这表明需要尚未鉴定的蛋白水解衔接蛋白来降解这两种磷酸酶。由于 表达在停滞期被诱导,依赖于应激感应物(p)ppGpp,我们提出 CckN 作为一种辅助因子,根据环境刺激来调节 CtrA 活性,以适应亚最佳条件。双组分信号转导系统被细菌广泛用于通过调节细胞参数,包括细胞周期,来适当地响应环境变化。在 中,PleC 作为一种磷酸酶,在细胞周期的 G 期间接保护反应调节剂 CtrA 免于过早失活。在这里,我们提供了遗传和生化证据,表明 PleC 由另一种磷酸酶 CckN 协助。PleC 和 CckN 磷酸酶的活性仅限于 G 期,因为这两种蛋白质都在 G1-S 过渡之前被 ClpXP 蛋白酶降解。降解不依赖于任何已知的蛋白水解衔接蛋白,并且在 CckN 的情况下,依赖于一个意想不到的 N 端降解信号。我们的工作说明了两个双组分蛋白之间冗余功能的一个典型例子。

相似文献

1
Regulation of Bacterial Cell Cycle Progression by Redundant Phosphatases.
J Bacteriol. 2020 Aug 10;202(17). doi: 10.1128/JB.00345-20.
2
An essential, multicomponent signal transduction pathway required for cell cycle regulation in Caulobacter.
Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1443-8. doi: 10.1073/pnas.95.4.1443.
4
The DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti.
Mol Microbiol. 2013 Oct;90(1):54-71. doi: 10.1111/mmi.12347. Epub 2013 Aug 19.
5
Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus.
Mol Microbiol. 2003 Mar;47(6):1695-708. doi: 10.1046/j.1365-2958.2003.03401.x.
6
Dynamical Localization of DivL and PleC in the Asymmetric Division Cycle of Caulobacter crescentus: A Theoretical Investigation of Alternative Models.
PLoS Comput Biol. 2015 Jul 17;11(7):e1004348. doi: 10.1371/journal.pcbi.1004348. eCollection 2015 Jul.
8
Sinorhizobium meliloti CtrA Stability Is Regulated in a CbrA-Dependent Manner That Is Influenced by CpdR1.
J Bacteriol. 2015 Jul;197(13):2139-2149. doi: 10.1128/JB.02593-14. Epub 2015 Apr 20.
9
Convergence of alarmone and cell cycle signaling from trans-encoded sensory domains.
mBio. 2015 Oct 20;6(5):e01415-15. doi: 10.1128/mBio.01415-15.
10
Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus.
Annu Rev Microbiol. 2003;57:225-47. doi: 10.1146/annurev.micro.57.030502.091006.

引用本文的文献

3
Regulation of potassium uptake in .
J Bacteriol. 2024 Sep 19;206(9):e0010724. doi: 10.1128/jb.00107-24. Epub 2024 Aug 12.
4
Phosphatase to kinase switch of a critical enzyme contributes to timing of cell differentiation.
mBio. 2024 Jan 16;15(1):e0212523. doi: 10.1128/mbio.02125-23. Epub 2023 Dec 6.
6
Asparagine Uptake: a Cellular Strategy of to Combat Severe Salt Stress.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0011323. doi: 10.1128/aem.00113-23. Epub 2023 May 15.
7
Synchronized Swarmers and Sticky Stalks: Caulobacter crescentus as a Model for Bacterial Cell Biology.
J Bacteriol. 2023 Feb 22;205(2):e0038422. doi: 10.1128/jb.00384-22. Epub 2023 Jan 30.
8
The two-component system ChvGI maintains cell envelope homeostasis in Caulobacter crescentus.
PLoS Genet. 2022 Dec 8;18(12):e1010465. doi: 10.1371/journal.pgen.1010465. eCollection 2022 Dec.
9
Proteolysis dependent cell cycle regulation in Caulobacter crescentus.
Cell Div. 2022 Apr 1;17(1):3. doi: 10.1186/s13008-022-00078-z.
10
The noncoding RNA CcnA modulates the master cell cycle regulators CtrA and GcrA in Caulobacter crescentus.
PLoS Biol. 2022 Feb 22;20(2):e3001528. doi: 10.1371/journal.pbio.3001528. eCollection 2022 Feb.

本文引用的文献

1
Precise timing of transcription by c-di-GMP coordinates cell cycle and morphogenesis in Caulobacter.
Nat Commun. 2020 Feb 10;11(1):816. doi: 10.1038/s41467-020-14585-6.
2
Bacterial cell cycle and growth phase switch by the essential transcriptional regulator CtrA.
Nucleic Acids Res. 2019 Nov 18;47(20):10628-10644. doi: 10.1093/nar/gkz846.
3
Reciprocal control of motility and biofilm formation by the PdhS2 two-component sensor kinase of Agrobacterium tumefaciens.
Microbiology (Reading). 2019 Feb;165(2):146-162. doi: 10.1099/mic.0.000758. Epub 2019 Jan 8.
4
Regulation of (p)ppGpp hydrolysis by a conserved archetypal regulatory domain.
Nucleic Acids Res. 2019 Jan 25;47(2):843-854. doi: 10.1093/nar/gky1201.
6
Phosphorelay through the bifunctional phosphotransferase PhyT controls the general stress response in an alphaproteobacterium.
PLoS Genet. 2018 Apr 13;14(4):e1007294. doi: 10.1371/journal.pgen.1007294. eCollection 2018 Apr.
7
CtrA controls cell division and outer membrane composition of the pathogen Brucella abortus.
Mol Microbiol. 2017 Mar;103(5):780-797. doi: 10.1111/mmi.13589. Epub 2017 Jan 10.
8
In-phase oscillation of global regulons is orchestrated by a pole-specific organizer.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12550-12555. doi: 10.1073/pnas.1610723113. Epub 2016 Oct 17.
9
Protease regulation and capacity during Caulobacter growth.
Curr Opin Microbiol. 2016 Dec;34:75-81. doi: 10.1016/j.mib.2016.07.017. Epub 2016 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验