Bacterial Cell Cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur, Belgium.
Infection Biology, Biozentrum, University of Basel, Basel, Switzerland.
J Bacteriol. 2020 Aug 10;202(17). doi: 10.1128/JB.00345-20.
In the model organism , a network of two-component systems involving the response regulators CtrA, DivK, and PleD coordinates cell cycle progression with differentiation. Active phosphorylated CtrA prevents chromosome replication in G cells while simultaneously regulating expression of genes required for morphogenesis and development. At the G-S transition, phosphorylated DivK (DivK∼P) and PleD (PleD∼P) accumulate to indirectly inactivate CtrA, which triggers DNA replication initiation and concomitant cellular differentiation. The phosphatase PleC plays a pivotal role in this developmental program by keeping DivK and PleD phosphorylation levels low during G, thereby preventing premature CtrA inactivation. Here, we describe CckN as a second phosphatase akin to PleC that dephosphorylates DivK∼P and PleD∼P in G cells. However, in contrast to PleC, no kinase activity was detected with CckN. The effects of CckN inactivation are largely masked by PleC but become evident when PleC and DivJ, the major kinase for DivK and PleD, are absent. Accordingly, mild overexpression of restores most phenotypic defects of a null mutant. We also show that CckN and PleC are proteolytically degraded in a ClpXP-dependent way before the onset of the S phase. Surprisingly, known ClpX adaptors are dispensable for PleC and CckN proteolysis, raising the possibility that as yet unidentified proteolytic adaptors are required for the degradation of both phosphatases. Since expression is induced in stationary phase, depending on the stress alarmone (p)ppGpp, we propose that CckN acts as an auxiliary factor responding to environmental stimuli to modulate CtrA activity under suboptimal conditions. Two-component signal transduction systems are widely used by bacteria to adequately respond to environmental changes by adjusting cellular parameters, including the cell cycle. In , PleC acts as a phosphatase that indirectly protects the response regulator CtrA from premature inactivation during the G phase of the cell cycle. Here, we provide genetic and biochemical evidence that PleC is seconded by another phosphatase, CckN. The activity of PleC and CckN phosphatases is restricted to the G phase since both proteins are degraded by ClpXP protease before the G-S transition. Degradation is independent of any known proteolytic adaptors and relies, in the case of CckN, on an unsuspected N-terminal degron. Our work illustrates a typical example of redundant functions between two-component proteins.
在模式生物中,一个涉及两个组件系统的网络,包括反应调节剂 CtrA、DivK 和 PleD,协调细胞周期进程与分化。活性磷酸化的 CtrA 阻止 G 细胞中的染色体复制,同时调节形态发生和发育所需的基因表达。在 G1-S 过渡期间,磷酸化的 DivK(DivK∼P)和 PleD(PleD∼P)积累,间接使 CtrA 失活,从而触发 DNA 复制起始和伴随的细胞分化。磷酸酶 PleC 在这个发育程序中起着关键作用,因为它在 G 期保持 DivK 和 PleD 的磷酸化水平低,从而防止过早的 CtrA 失活。在这里,我们将 CckN 描述为一种类似于 PleC 的第二种磷酸酶,它可以使 G 细胞中的 DivK∼P 和 PleD∼P 去磷酸化。然而,与 PleC 不同的是,没有检测到 CckN 的激酶活性。CckN 失活的影响在很大程度上被 PleC 掩盖,但当 PleC 和 DivJ(DivK 和 PleD 的主要激酶)缺失时,这种影响就变得明显了。因此,过表达 可以恢复 缺失突变体的大部分表型缺陷。我们还表明,CckN 和 PleC 在 ClpXP 依赖性方式下在 S 期开始前被蛋白水解降解。令人惊讶的是,已知的 ClpX 衔接蛋白对于 PleC 和 CckN 的蛋白水解是可有可无的,这表明需要尚未鉴定的蛋白水解衔接蛋白来降解这两种磷酸酶。由于 表达在停滞期被诱导,依赖于应激感应物(p)ppGpp,我们提出 CckN 作为一种辅助因子,根据环境刺激来调节 CtrA 活性,以适应亚最佳条件。双组分信号转导系统被细菌广泛用于通过调节细胞参数,包括细胞周期,来适当地响应环境变化。在 中,PleC 作为一种磷酸酶,在细胞周期的 G 期间接保护反应调节剂 CtrA 免于过早失活。在这里,我们提供了遗传和生化证据,表明 PleC 由另一种磷酸酶 CckN 协助。PleC 和 CckN 磷酸酶的活性仅限于 G 期,因为这两种蛋白质都在 G1-S 过渡之前被 ClpXP 蛋白酶降解。降解不依赖于任何已知的蛋白水解衔接蛋白,并且在 CckN 的情况下,依赖于一个意想不到的 N 端降解信号。我们的工作说明了两个双组分蛋白之间冗余功能的一个典型例子。