Suppr超能文献

用于低温乙醇气体传感的电纺(镍和钯)二氧化锡/聚苯胺/聚羟基-3-丁酸酯可生物降解纳米复合纤维

Electrospun (Nickel and palladium) tin(IV) oxide/polyaniline/polyhydroxy-3-butyrate biodegradable nanocomposite fibers for low temperature ethanol gas sensing.

作者信息

Inderan Vicinisvarri, Arafat M M, Haseeb A S M A, Sudesh Kumar, Lee Hooi Ling

机构信息

Nanomaterials Research Group, School of Chemical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia. Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500, Permatang Pauh, Penang, Malaysia.

出版信息

Nanotechnology. 2020 Jun 29;31(42):425503. doi: 10.1088/1361-6528/aba0f1.

Abstract

Tin (IV) oxide (SnO) nanostructures are regarded as one of the most popular materials for conventional gas sensors, due to their high surface area and fast response in regard to most reducing and oxidizing gases. However, their high operating temperature (>200 °C) leads to high power consumption and limits their applications. Here, a new nanocomposite fiber materials, consisting of undoped and doped (nickel and palladium) SnO nanorods, polyaniline (PANI), and polyhydroxy-3-butyrate (P3HB) are synthesized via the hydrothermal method,followed by an in situ polymerization and electrospinning technique. The as-synthesized nanocomposites are tested using ethanol gas at different operating temperatures: 25 °C (room temperature), 60 °C, and 80 °C. The results reveal that all samples began to show a response at 80 °C. Pd:SnO/PANI/P3HB nanocomposite fiber sensors demonstrate a relatively higher response than that of SnO/PANI/P3HB and Ni:SnO/PANI/P3HB nanocomposite sensors. At 80 °C , the Pd:SnO/PANI/P3HB nanocomposite sensor records a response (R/R ) of 1610, with a response time (T) of 90 s and a recovery time (T ) of 9 min in relation to 1000 ppm ethanol gas in N. The sensor also displays a good level of response (R/R = 200) at a low concentration level (50 ppm) of ethanol gas. Structural and chemical characterizations indicate that the ethanol gas sensing performance of Pd:SnO/PANI/P3HB nanocomposite fibers can mainly be attributed to the p-n heterojunction, fiber geometry, and one-dimensional structure of SnO and to the presence of the Pd catalyst. This bio-nanocomposite fiber has the potential to be a breakthrough material in biodegradable low temperature ethanol sensing applications.

摘要

二氧化锡(SnO)纳米结构因其高表面积以及对大多数还原性和氧化性气体的快速响应,被视为传统气体传感器最常用的材料之一。然而,其较高的工作温度(>200°C)导致高功耗并限制了其应用。在此,通过水热法合成了一种新型纳米复合纤维材料,该材料由未掺杂和掺杂(镍和钯)的SnO纳米棒、聚苯胺(PANI)和聚羟基-3-丁酸酯(P3HB)组成,随后采用原位聚合和静电纺丝技术。使用乙醇气体在不同工作温度下对合成的纳米复合材料进行测试:25°C(室温)、60°C和80°C。结果表明,所有样品在80°C时开始显示出响应。钯掺杂的SnO/PANI/P3HB纳米复合纤维传感器表现出比SnO/PANI/P3HB和镍掺杂的SnO/PANI/P3HB纳米复合传感器相对更高的响应。在80°C时,钯掺杂的SnO/PANI/P3HB纳米复合传感器对于氮气中1000 ppm乙醇气体的响应(R/R)为1610,响应时间(T)为90秒,恢复时间(T)为9分钟。该传感器在低浓度(50 ppm)乙醇气体下也显示出良好的响应水平(R/R = 200)。结构和化学表征表明,钯掺杂的SnO/PANI/P3HB纳米复合纤维的乙醇气敏性能主要归因于p-n异质结、纤维几何形状、SnO的一维结构以及钯催化剂的存在。这种生物纳米复合纤维有潜力成为可生物降解低温乙醇传感应用中的突破性材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验