Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel.
Bone Joint J. 2020 Jul;102-B(7_Supple_B):11-19. doi: 10.1302/0301-620X.102B7.BJJ-2019-1628.R1.
Failure of irrigation and debridement (I&D) for prosthetic joint infection (PJI) is influenced by numerous host, surgical, and pathogen-related factors. We aimed to develop and validate a practical, easy-to-use tool based on machine learning that may accurately predict outcome following I&D surgery taking into account the influence of numerous factors.
This was an international, multicentre retrospective study of 1,174 revision total hip (THA) and knee arthroplasties (TKA) undergoing I&D for PJI between January 2005 and December 2017. PJI was defined using the Musculoskeletal Infection Society (MSIS) criteria. A total of 52 variables including demographics, comorbidities, and clinical and laboratory findings were evaluated using random forest machine learning analysis. The algorithm was then verified through cross-validation.
Of the 1,174 patients that were included in the study, 405 patients (34.5%) failed treatment. Using random forest analysis, an algorithm that provides the probability for failure for each specific patient was created. By order of importance, the ten most important variables associated with failure of I&D were serum CRP levels, positive blood cultures, indication for index arthroplasty other than osteoarthritis, not exchanging the modular components, use of immunosuppressive medication, late acute (haematogenous) infections, methicillin-resistant infection, overlying skin infection, polymicrobial infection, and older age. The algorithm had good discriminatory capability (area under the curve = 0.74). Cross-validation showed similar probabilities comparing predicted and observed failures indicating high accuracy of the model.
This is the first study in the orthopaedic literature to use machine learning as a tool for predicting outcomes following I&D surgery. The developed algorithm provides the medical profession with a tool that can be employed in clinical decision-making and improve patient care. Future studies should aid in further validating this tool on additional cohorts. Cite this article: 2020;102-B(7 Supple B):11-19.
关节置换术后感染(PJI)的灌洗和清创术(I&D)失败受许多宿主、手术和病原体相关因素的影响。我们旨在开发和验证一种实用、易于使用的工具,该工具基于机器学习,可以准确预测考虑到众多因素的 I&D 手术后的结果。
这是一项国际性的多中心回顾性研究,共纳入 2005 年 1 月至 2017 年 12 月期间因 PJI 接受 I&D 的 1174 例翻修全髋关节(THA)和膝关节置换术(TKA)患者。PJI 的定义采用肌肉骨骼感染学会(MSIS)标准。共评估了 52 个变量,包括人口统计学、合并症以及临床和实验室发现,使用随机森林机器学习分析。然后通过交叉验证验证该算法。
在纳入研究的 1174 例患者中,有 405 例(34.5%)治疗失败。通过随机森林分析,为每个特定患者创建了一个提供失败概率的算法。按重要性顺序,与 I&D 失败相关的十个最重要的变量为血清 CRP 水平、血培养阳性、除骨关节炎以外的指数关节置换的指征、未更换模块组件、使用免疫抑制药物、晚期急性(血源性)感染、耐甲氧西林感染、皮肤感染、混合感染和年龄较大。该算法具有良好的区分能力(曲线下面积=0.74)。交叉验证表明,预测和观察到的失败之间的概率相似,表明该模型具有较高的准确性。
这是骨科文献中首次使用机器学习作为工具来预测 I&D 手术后的结果。开发的算法为医学界提供了一种可用于临床决策的工具,可以改善患者的治疗效果。未来的研究应在其他队列中进一步验证该工具。引用本文:2020;102-B(7 增刊 B):11-19。