Suppr超能文献

关于 SARS-CoV-2 起源的最新进展:尽管蝙蝠(RaTG13)和穿山甲衍生的冠状病毒最为接近,但在关键结合位点和 O-连接糖基化残基上存在差异。

An update on the origin of SARS-CoV-2: Despite closest identity, bat (RaTG13) and pangolin derived coronaviruses varied in the critical binding site and O-linked glycan residues.

机构信息

Division of Virology, Department of Microbiology, Sri Muthukumaran Medical College Hospital and Research Institute, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chikkarayapuram, Chennai, India.

Central Research Facility, Meenakshi Medical College Hospital and Research Institute, Meenakshi Academy of Higher Education and Research, Kancheepuram, Tamilnadu, India.

出版信息

J Med Virol. 2021 Jan;93(1):499-505. doi: 10.1002/jmv.26261. Epub 2020 Jul 14.

Abstract

The initial cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) occurred in Wuhan, China, in December 2019 and swept the world by 23 June 2020 with 8 993 659 active cases, 469 587 deaths across 216 countries, areas or territories. This strongly implies global transmission occurred before the lockdown of China. However, the initial source's transmission routes of SARS-CoV-2 remain obscure and controversial. Research data suggest bat (RaTG13) and pangolin carried CoV were the proximal source of SARS-CoV-2. In this study, we used systematic phylogenetic analysis of Coronavirinae subfamily along with wild type human SARS-CoV, MERS-CoV, and SARS-CoV-2 strains. The key residues of the receptor-binding domain (RBD) and O-linked glycan were compared. SARS-CoV-2 strains were clustered with RaTG13 (97.41% identity), Pangolin-CoV (92.22% identity) and Bat-SL-CoV (80.36% identity), forms a new clade-2 in lineage B of beta-CoV. The alignments of RBD contact residues to ACE2 justified? Those SARS-CoV-2 strains sequences were 100% identical by each other, significantly varied in RaTG13 and pangolin-CoV. SARS-CoV-2 has a polybasic cleavage site with an inserted sequence of PRRA compared to RaTG13 and only PRR to pangolin. Only serine (Ser) in pangolin and both threonine (Thr) and serine (Ser) O-linked glycans were seen in RaTG13, suggesting that a detailed study needed in pangolin (Manis javanica) and bat (Rhinolophus affinis) related CoV.

摘要

严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的最初病例于 2019 年 12 月在中国武汉发生,并于 2020 年 6 月 23 日席卷全球,全球有 8993659 例活跃病例,216 个国家、地区或领土有 469587 例死亡。这强烈表明,在对中国实施封锁之前,病毒就已经在全球传播了。然而,SARS-CoV-2 的初始来源的传播途径仍不清楚且存在争议。研究数据表明,蝙蝠(RaTG13)和穿山甲携带的 CoV 是 SARS-CoV-2 的近源宿主。在这项研究中,我们使用冠状病毒科亚科的系统系统发育分析,以及野生型人类 SARS-CoV、MERS-CoV 和 SARS-CoV-2 株。比较了受体结合域(RBD)和 O-连接聚糖的关键残基。SARS-CoV-2 株与 RaTG13(97.41%的同一性)、穿山甲-CoV(92.22%的同一性)和蝙蝠-SL-CoV(80.36%的同一性)聚类,在谱系 B 的贝塔-CoV 中形成一个新的分支-2。RBD 接触残基与 ACE2 的比对证明了这一点,这些 SARS-CoV-2 株之间的序列彼此完全相同,而 RaTG13 和穿山甲-CoV 中的序列则有显著差异。与 RaTG13 相比,SARS-CoV-2 具有多碱性切割位点,插入序列为 PRRA,而仅在穿山甲-CoV 中插入序列为 PRR。只有在穿山甲中发现丝氨酸(Ser),而在 RaTG13 中则发现苏氨酸(Thr)和丝氨酸(Ser)O-连接聚糖,这表明需要对穿山甲(Manis javanica)和蝙蝠(Rhinolophus affinis)相关的 CoV 进行详细研究。

相似文献

2
Molecular evolution and phylogenetic analysis of SARS-CoV-2 and hosts ACE2 protein suggest Malayan pangolin as intermediary host.
Braz J Microbiol. 2020 Dec;51(4):1593-1599. doi: 10.1007/s42770-020-00321-1. Epub 2020 Jun 26.
3
Bat and pangolin coronavirus spike glycoprotein structures provide insights into SARS-CoV-2 evolution.
Nat Commun. 2021 Mar 11;12(1):1607. doi: 10.1038/s41467-021-21767-3.
4
Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins.
Nature. 2020 Jul;583(7815):286-289. doi: 10.1038/s41586-020-2313-x. Epub 2020 May 7.
7
Untangling the Evolution of the Receptor-Binding Motif of SARS-CoV-2.
J Mol Evol. 2024 Jun;92(3):329-337. doi: 10.1007/s00239-024-10175-y. Epub 2024 May 22.
8
Conservation analysis of SARS-CoV-2 spike suggests complicated viral adaptation history from bat to human.
Evol Med Public Health. 2020 Nov 5;2020(1):290-303. doi: 10.1093/emph/eoaa041. eCollection 2020.

引用本文的文献

2
Neurologic Manifestations of Coronavirus Disease 2019 in Children: An Iranian Hospital-Based Study.
Arch Iran Med. 2023 Mar 1;26(3):166-171. doi: 10.34172/aim.2023.25.
3
A SARS-CoV-2: Companion Animal Transmission and Variants Classification.
Pathogens. 2023 May 29;12(6):775. doi: 10.3390/pathogens12060775.
4
Possible spread of SARS-CoV-2 in domestic and wild animals and body temperature role.
Virus Res. 2023 Apr 2;327:199066. doi: 10.1016/j.virusres.2023.199066. Epub 2023 Feb 10.
5
COVID-19 and thyroid function: What do we know so far?
Front Endocrinol (Lausanne). 2022 Dec 19;13:1041676. doi: 10.3389/fendo.2022.1041676. eCollection 2022.
6
SARS-CoV-2 surveillance with environmental surface sampling in public areas.
PLoS One. 2022 Nov 23;17(11):e0278061. doi: 10.1371/journal.pone.0278061. eCollection 2022.
8
Computer-aided discovery, design, and investigation of COVID-19 therapeutics.
Tzu Chi Med J. 2022 Mar 28;34(3):276-286. doi: 10.4103/tcmj.tcmj_318_21. eCollection 2022 Jul-Sep.
9
Janus kinase inhibitors for the treatment of COVID-19.
Cochrane Database Syst Rev. 2022 Jun 13;6(6):CD015209. doi: 10.1002/14651858.CD015209.
10
The Interplay Between Coronavirus and Type I IFN Response.
Front Microbiol. 2022 Mar 4;12:805472. doi: 10.3389/fmicb.2021.805472. eCollection 2021.

本文引用的文献

1
Emergence of SARS-CoV-2 through recombination and strong purifying selection.
Sci Adv. 2020 Jul 1;6(27). doi: 10.1126/sciadv.abb9153. Print 2020 Jul.
2
Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)?
PLoS Pathog. 2020 May 14;16(5):e1008421. doi: 10.1371/journal.ppat.1008421. eCollection 2020 May.
5
Bioinformatic analysis indicates that SARS-CoV-2 is unrelated to known artificial coronaviruses.
Eur Rev Med Pharmacol Sci. 2020 Apr;24(8):4558-4564. doi: 10.26355/eurrev_202004_21041.
6
Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction.
Emerg Microbes Infect. 2020 Dec;9(1):837-842. doi: 10.1080/22221751.2020.1756700.
7
The proximal origin of SARS-CoV-2.
Nat Med. 2020 Apr;26(4):450-452. doi: 10.1038/s41591-020-0820-9.
8
Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.
Nature. 2020 May;581(7807):215-220. doi: 10.1038/s41586-020-2180-5. Epub 2020 Mar 30.
9
Structural basis of receptor recognition by SARS-CoV-2.
Nature. 2020 May;581(7807):221-224. doi: 10.1038/s41586-020-2179-y. Epub 2020 Mar 30.
10
A Genomic Perspective on the Origin and Emergence of SARS-CoV-2.
Cell. 2020 Apr 16;181(2):223-227. doi: 10.1016/j.cell.2020.03.035. Epub 2020 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验