Suppr超能文献

PRMT5对cGAS/STING和NLRC5通路的调控决定了黑色素瘤对抗肿瘤免疫的反应。

PRMT5 control of cGAS/STING and NLRC5 pathways defines melanoma response to antitumor immunity.

作者信息

Kim Hyungsoo, Kim Heejung, Feng Yongmei, Li Yan, Tamiya Hironari, Tocci Stefania, Ronai Ze'ev A

机构信息

Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 90237, USA.

Technion Integrated Cancer Center, Technion, Haifa 3109601, Israel.

出版信息

Sci Transl Med. 2020 Jul 8;12(551). doi: 10.1126/scitranslmed.aaz5683.

Abstract

Protein arginine methyltransferase 5 (PRMT5) controls diverse cellular processes and is implicated in cancer development and progression. Here, we report an inverse correlation between PRMT5 function and antitumor immunity. expression was associated with an antitumor immune gene signature in human melanoma tissue. Reducing PRMT5 activity antagonized melanoma growth in immunocompetent but not immunocompromised mice. PRMT5 methylation of IFI16 [interferon-γ (IFN-γ)-inducible protein 16] or its murine homolog IFI204, which are components of the cGAS/STING (stimulator of IFN genes) pathway, attenuated cytosolic DNA-induced IFN and chemokine expression in melanoma cells. PRMT5 also inhibited transcription of the gene encoding NLRC5 (nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 5), a protein that promotes the expression of genes implicated in major histocompatibility complex class I (MHCI) antigen presentation. PRMT5 knockdown augmented IFN and chemokine production and increased MHCI abundance in melanoma. Increased expression of and was associated with decreased melanoma growth in murine models, and increased expression of and correlated with prolonged survival of patients with melanoma. Combination of pharmacological (GSK3326595) or genetic (shRNA) inhibition of PRMT5 with immune checkpoint therapy limited growth of murine melanoma tumors (B16F10 and YUMM1.7) and enhanced therapeutic efficacy, compared with the effect of either treatment alone. Overall, our findings provide a rationale to test PRMT5 inhibitors in immunotherapy-based clinical trials as a means to enhance an antitumor immune response.

摘要

蛋白质精氨酸甲基转移酶5(PRMT5)控制着多种细胞过程,并与癌症的发生和发展有关。在此,我们报告了PRMT5功能与抗肿瘤免疫之间的负相关关系。其表达与人类黑色素瘤组织中的抗肿瘤免疫基因特征相关。降低PRMT5活性可在免疫健全而非免疫缺陷的小鼠中对抗黑色素瘤生长。PRMT5对IFI16[γ干扰素(IFN-γ)诱导蛋白16]或其小鼠同源物IFI204进行甲基化,它们是cGAS/STING(干扰素基因刺激物)途径的组成部分,可减弱黑色素瘤细胞中胞质DNA诱导的IFN和趋化因子表达。PRMT5还抑制编码NLRC5(含核苷酸结合寡聚化结构域样受体家族半胱天冬酶募集结构域5)的基因转录,NLRC5是一种促进主要组织相容性复合体I类(MHCI)抗原呈递相关基因表达的蛋白质。敲低PRMT5可增加黑色素瘤中IFN和趋化因子的产生,并增加MHCI丰度。在小鼠模型中, 和 的表达增加与黑色素瘤生长减少相关,而 和 的表达增加与黑色素瘤患者的生存期延长相关。与单独使用任何一种治疗方法相比,将PRMT5的药理学(GSK3326595)或基因(shRNA)抑制与免疫检查点疗法联合使用可限制小鼠黑色素瘤肿瘤(B16F10和YUMM1.7)的生长并增强治疗效果。总体而言,我们的研究结果为在基于免疫疗法的临床试验中测试PRMT5抑制剂提供了理论依据,以此作为增强抗肿瘤免疫反应的一种手段。

相似文献

1
PRMT5 control of cGAS/STING and NLRC5 pathways defines melanoma response to antitumor immunity.
Sci Transl Med. 2020 Jul 8;12(551). doi: 10.1126/scitranslmed.aaz5683.
2
Arginine methyltransferase PRMT5 negatively regulates cGAS-mediated antiviral immune response.
Sci Adv. 2021 Mar 24;7(13). doi: 10.1126/sciadv.abc1834. Print 2021 Mar.
5
Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia.
J Clin Invest. 2016 Oct 3;126(10):3961-3980. doi: 10.1172/JCI85239. Epub 2016 Sep 19.
6
Inhibition of PRMT5 moderately suppresses prostate cancer growth in vivo but enhances its response to immunotherapy.
Cancer Lett. 2024 Oct 10;602:217214. doi: 10.1016/j.canlet.2024.217214. Epub 2024 Aug 31.
7
8
CARM1-mediated methylation of protein arginine methyltransferase 5 represses human γ-globin gene expression in erythroleukemia cells.
J Biol Chem. 2018 Nov 9;293(45):17454-17463. doi: 10.1074/jbc.RA118.004028. Epub 2018 Sep 26.
9
The protein arginine methyltransferase PRMT5 confers therapeutic resistance to mTOR inhibition in glioblastoma.
J Neurooncol. 2019 Oct;145(1):11-22. doi: 10.1007/s11060-019-03274-0. Epub 2019 Aug 31.
10
cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection.
J Immunol. 2015 Apr 1;194(7):3236-45. doi: 10.4049/jimmunol.1402764. Epub 2015 Feb 20.

引用本文的文献

2
Targeting the interplay of cGAS-STING and ferroptosis by nanomedicine in the treatment of cancer.
J Exp Clin Cancer Res. 2025 Aug 22;44(1):249. doi: 10.1186/s13046-025-03520-6.
4
Stemness-driven clusters in ovarian cancer: immune characteristics and prognostic implications.
Front Oncol. 2025 Jun 11;15:1577283. doi: 10.3389/fonc.2025.1577283. eCollection 2025.
5
Arginine methylation patterns in LUAD: defining prognostic subtypes and relevance to immunotherapy.
Discov Oncol. 2025 May 21;16(1):853. doi: 10.1007/s12672-025-02549-5.
6
Molecular and immune landscape of melanoma: a risk stratification model for precision oncology.
Discov Oncol. 2025 May 4;16(1):667. doi: 10.1007/s12672-025-02497-0.
7
cGAS-STING signaling in melanoma: regulation and therapeutic targeting.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Apr 14. doi: 10.1007/s00210-025-04141-8.
8
Potential role of lactylation in intrinsic immune pathways in lung cancer.
Front Pharmacol. 2025 Mar 17;16:1533493. doi: 10.3389/fphar.2025.1533493. eCollection 2025.
9
Functions and mechanisms of non-histone post-translational modifications in cancer progression.
Cell Death Discov. 2025 Mar 31;11(1):125. doi: 10.1038/s41420-025-02410-2.
10
PRMT5 inhibitors: Therapeutic potential in pancreatic cancer.
Transl Oncol. 2025 May;55:102366. doi: 10.1016/j.tranon.2025.102366. Epub 2025 Mar 28.

本文引用的文献

1
Therapeutic Targeting of RNA Splicing Catalysis through Inhibition of Protein Arginine Methylation.
Cancer Cell. 2019 Aug 12;36(2):194-209.e9. doi: 10.1016/j.ccell.2019.07.003.
2
STING Polymer Structure Reveals Mechanisms for Activation, Hyperactivation, and Inhibition.
Cell. 2019 Jul 11;178(2):290-301.e10. doi: 10.1016/j.cell.2019.05.036. Epub 2019 Jun 20.
3
DNA Sensor IFI204 Contributes to Host Defense Against Infection in Mice.
Front Immunol. 2019 Mar 18;10:474. doi: 10.3389/fimmu.2019.00474. eCollection 2019.
4
PRMT1 loss sensitizes cells to PRMT5 inhibition.
Nucleic Acids Res. 2019 Jun 4;47(10):5038-5048. doi: 10.1093/nar/gkz200.
5
A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade.
Cell. 2018 Nov 1;175(4):984-997.e24. doi: 10.1016/j.cell.2018.09.006.
7
LSD1 Ablation Stimulates Anti-tumor Immunity and Enables Checkpoint Blockade.
Cell. 2018 Jul 26;174(3):549-563.e19. doi: 10.1016/j.cell.2018.05.052. Epub 2018 Jun 21.
8
Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies.
Immunity. 2018 Mar 20;48(3):417-433. doi: 10.1016/j.immuni.2018.03.007.
9
Mechanisms of resistance to immune checkpoint inhibitors.
Br J Cancer. 2018 Jan;118(1):9-16. doi: 10.1038/bjc.2017.434. Epub 2018 Jan 2.
10
SHARPIN-mediated regulation of protein arginine methyltransferase 5 controls melanoma growth.
J Clin Invest. 2018 Jan 2;128(1):517-530. doi: 10.1172/JCI95410. Epub 2017 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验