Suppr超能文献

从稀疏采样的噪声数据中推断基因调控网络。

Gene regulatory network inference from sparsely sampled noisy data.

机构信息

Luxembourg Centre for Systems Biomedicine, University of Luxembourg; 6 avenue du Swing, 4367, Belvaux, Luxembourg.

Department of Mathematics and Statistics, University of Helsinki; P.O. Box 68, Gustaf Hällströmin katu 2b, 00014, Helsinki, Finland.

出版信息

Nat Commun. 2020 Jul 13;11(1):3493. doi: 10.1038/s41467-020-17217-1.

Abstract

The complexity of biological systems is encoded in gene regulatory networks. Unravelling this intricate web is a fundamental step in understanding the mechanisms of life and eventually developing efficient therapies to treat and cure diseases. The major obstacle in inferring gene regulatory networks is the lack of data. While time series data are nowadays widely available, they are typically noisy, with low sampling frequency and overall small number of samples. This paper develops a method called BINGO to specifically deal with these issues. Benchmarked with both real and simulated time-series data covering many different gene regulatory networks, BINGO clearly and consistently outperforms state-of-the-art methods. The novelty of BINGO lies in a nonparametric approach featuring statistical sampling of continuous gene expression profiles. BINGO's superior performance and ease of use, even by non-specialists, make gene regulatory network inference available to any researcher, helping to decipher the complex mechanisms of life.

摘要

生物系统的复杂性编码在基因调控网络中。揭示这个错综复杂的网络是理解生命机制并最终开发有效治疗和治愈疾病的方法的基本步骤。推断基因调控网络的主要障碍是缺乏数据。虽然时间序列数据现在广泛可用,但它们通常是嘈杂的,采样频率低,总体样本数量少。本文开发了一种称为 BINGO 的方法来专门处理这些问题。使用涵盖许多不同基因调控网络的真实和模拟时间序列数据进行基准测试,BINGO 明显且一致地优于最先进的方法。BINGO 的新颖之处在于一种基于统计抽样的连续基因表达谱的非参数方法。BINGO 的卓越性能和易用性,即使是非专家也可以使用,使基因调控网络推断可供任何研究人员使用,有助于破译生命的复杂机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dca/7359369/59f0d4b89b0d/41467_2020_17217_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验