Suppr超能文献

荞麦 UDP-糖基转移酶 UGT708C1 的晶体结构为 -糖基化机制研究提供了线索。

Crystal Structures of the -Glycosyltransferase UGT708C1 from Buckwheat Provide Insights into the Mechanism of -Glycosylation.

机构信息

College of Pharmacy, Nankai University, Tianjin 300353, People's Republic of China.

State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, People's Republic of China.

出版信息

Plant Cell. 2020 Sep;32(9):2917-2931. doi: 10.1105/tpc.20.00002. Epub 2020 Jul 22.

Abstract

-Glycosyltransferases (CGTs) catalyze the formation of -glycosidic bonds for the biosynthesis of -glycosides, but the underlying mechanism is unclear. This process improves the solubility and bioavailability of specialized metabolites, which play important roles in plant growth and development and represent rich resources for drug discovery. Here, we performed functional and structural studies of the CGT UGT708C1 from buckwheat (). Enzymatic analysis showed that UGT708C1 is capable of utilizing both UDP-galactose and UDP-glucose as sugar donors. Our structural studies of UGT708C1 complexed with UDP-glucose and UDP identified the key roles of Asp382, Gln383, Thr151, and Thr150 in recognizing the sugar moiety of the donor substrate and Phe130, Tyr102, and Phe198 in binding and stabilizing the acceptor. A systematic site-directed mutagenesis study confirmed the important roles of these residues. Further structural analysis combined with molecular dynamics simulations revealed that phloretin binds to the acceptor binding pocket in a bent state with a precise spatial disposition and complementarity. These findings provide insights into a catalytic mechanism for CGTs.

摘要

糖基转移酶(CGTs)催化糖苷的生物合成中β-糖苷键的形成,但具体机制尚不清楚。这一过程提高了特殊代谢物的溶解性和生物利用度,这些代谢物在植物生长发育中起着重要作用,也是药物发现的丰富资源。本研究对荞麦 CGT UGT708C1 进行了功能和结构研究。酶学分析表明,UGT708C1 能够同时利用 UDP-半乳糖和 UDP-葡萄糖作为糖供体。我们对 UGT708C1 与 UDP-葡萄糖和 UDP 形成的复合物进行了结构研究,确定了 Asp382、Gln383、Thr151 和 Thr150 在识别供体底物糖部分中的关键作用,以及 Phe130、Tyr102 和 Phe198 在结合和稳定受体中的作用。系统的定点突变研究证实了这些残基的重要作用。进一步的结构分析结合分子动力学模拟表明,根皮苷以弯曲状态结合到受体结合口袋中,具有精确的空间排布和互补性。这些发现为 CGT 的催化机制提供了新的见解。

相似文献

2
Functional Characterization and Structural Basis of an Efficient Di--glycosyltransferase from .
J Am Chem Soc. 2020 Feb 19;142(7):3506-3512. doi: 10.1021/jacs.9b12211. Epub 2020 Feb 11.
3
Structural Insights into the Catalytic Mechanism of a Plant Diterpene Glycosyltransferase SrUGT76G1.
Plant Commun. 2019 Sep 28;1(1):100004. doi: 10.1016/j.xplc.2019.100004. eCollection 2020 Jan 13.
6
Broaden the sugar donor selectivity of blackberry glycosyltransferase UGT78H2 through residual substitutions.
Int J Biol Macromol. 2021 Jan 1;166:277-287. doi: 10.1016/j.ijbiomac.2020.10.184. Epub 2020 Oct 29.
7
Dissection of the general two-step di--glycosylation pathway for the biosynthesis of (iso)schaftosides in higher plants.
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30816-30823. doi: 10.1073/pnas.2012745117. Epub 2020 Nov 16.
9
Molecular and Structural Characterization of a Promiscuous C-Glycosyltransferase from Trollius chinensis.
Angew Chem Int Ed Engl. 2019 Aug 12;58(33):11513-11520. doi: 10.1002/anie.201905505. Epub 2019 Jul 8.

引用本文的文献

1
Mechanistic elucidation of enzymatic -glycosylation: facilitation by proton transfer to UDP-glucose.
RSC Adv. 2025 Aug 12;15(35):28592-28600. doi: 10.1039/d5ra02643a. eCollection 2025 Aug 11.
2
Functional analysis of a UDP-glucosyltransferase gene contributing to biosynthesis of the flavonol triglycoside in tea plants.
Hortic Res. 2025 May 6;12(9):uhaf149. doi: 10.1093/hr/uhaf149. eCollection 2025 Sep.
3
UGT708S6 from Dendrobium catenatum, catalyzes the formation of flavonoid C-glycosides.
BMC Biotechnol. 2024 Nov 19;24(1):94. doi: 10.1186/s12896-024-00923-9.
5
Advances in glycosyltransferase-mediated glycodiversification of small molecules.
3 Biotech. 2024 Sep;14(9):209. doi: 10.1007/s13205-024-04044-0. Epub 2024 Aug 23.
7
The sugar donor specificity of plant family 1 glycosyltransferases.
Front Bioeng Biotechnol. 2024 May 2;12:1396268. doi: 10.3389/fbioe.2024.1396268. eCollection 2024.
8
Structure-function and engineering of plant UDP-glycosyltransferase.
Comput Struct Biotechnol J. 2023 Oct 27;21:5358-5371. doi: 10.1016/j.csbj.2023.10.046. eCollection 2023.
9
Identification and Characterization of CtUGT3 as the Key Player of Astragalin Biosynthesis in L.
J Agric Food Chem. 2023 Nov 1;71(43):16221-16232. doi: 10.1021/acs.jafc.3c05117. Epub 2023 Oct 23.
10
Glycosyltransferases: Mining, engineering and applications in biosynthesis of glycosylated plant natural products.
Synth Syst Biotechnol. 2022 Feb 2;7(1):602-620. doi: 10.1016/j.synbio.2022.01.001. eCollection 2022 Mar.

本文引用的文献

1
Molecular and Structural Characterization of a Promiscuous C-Glycosyltransferase from Trollius chinensis.
Angew Chem Int Ed Engl. 2019 Aug 12;58(33):11513-11520. doi: 10.1002/anie.201905505. Epub 2019 Jul 8.
2
Triterpenoid-biosynthetic UDP-glycosyltransferases from plants.
Biotechnol Adv. 2019 Nov 15;37(7):107394. doi: 10.1016/j.biotechadv.2019.04.016. Epub 2019 May 9.
5
Recent Advances in the Chemical Synthesis of C-Glycosides.
Chem Rev. 2017 Oct 11;117(19):12281-12356. doi: 10.1021/acs.chemrev.7b00234. Epub 2017 Sep 15.
6
C-Glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants.
Plant J. 2017 Jul;91(2):187-198. doi: 10.1111/tpj.13555. Epub 2017 Jun 5.
7
Molecular characterization of the C-glucosylation for puerarin biosynthesis in Pueraria lobata.
Plant J. 2017 May;90(3):535-546. doi: 10.1111/tpj.13510. Epub 2017 Mar 23.
8
Screening Glycosyltransferases for Polyphenol Modifications.
Methods Mol Biol. 2017;1539:229-236. doi: 10.1007/978-1-4939-6691-2_14.
9
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
10
Natural product discovery: past, present, and future.
J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):155-76. doi: 10.1007/s10295-015-1723-5. Epub 2016 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验