School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
J Control Release. 2020 Oct 10;326:442-454. doi: 10.1016/j.jconrel.2020.07.023. Epub 2020 Jul 26.
Hypoxia is a hallmark of many malignant solid tumors. The inadequate oxygen concentration in the hypoxic regions of a solid tumor impedes the efficiency of photodynamic therapy (PDT) because the generation of reactive oxygen species during the PDT process is directly dependent on the available oxygen. To enhance the therapeutic efficacy of PDT, we have developed a novel catalytic nanoplatform (nGO-hemin-Ce6) by co-encapsulating hemin as a catalase-mimetic nanozyme and chlorin e6 (Ce6) as a photosensitizer into Pluronic-coated nanographene oxide through simple hydrophobic interaction and π-π stacking. The nanosystem showed high cellular uptake in the breast cancer cells but did not show any cytotoxicity in the dark condition. nGO-hemin-Ce6 showed efficient O generation capacity in the presence of HO, through the catalase-mimetic activity of hemin. In the in vitro cell experiments, only nGO-hemin-Ce6 could show comparable PDT effect in normoxia as well as hypoxia due to the in situ O generation capability. Upon intravenous administration, nGO-hemin-Ce6 nanosystem showed high tumor accumulation through passive targeting owing to their small size (~ 50 nm). Within the tumor, hemin generated O from the endogenous HO and attenuated hypoxia as evidenced by the reduced expression of HIF-1α, a prominent hypoxia marker. Meanwhile, catalytically generated O markedly improved the therapeutic efficiency of PDT in a mouse tumor xenograft model by aiding the light-induced ROS production by Ce6. Compared to a control nanosystem without hemin (nGOCe6), the catalytic nanosystem of nGO-hemin-Ce6 exhibited significantly higher tumor suppression ability.
缺氧是许多恶性实体瘤的一个标志。实体瘤缺氧区域的氧浓度不足会降低光动力疗法(PDT)的效率,因为 PDT 过程中活性氧的产生直接依赖于可用的氧气。为了提高 PDT 的治疗效果,我们通过简单的疏水相互作用和π-π堆积,将血红素封装为类过氧化物酶纳米酶,并将氯卟啉 e6(Ce6)封装为光敏剂,共同包封到 Pluronic 涂层的纳米氧化石墨烯中,开发了一种新型催化纳米平台(nGO-血红素-Ce6)。该纳米系统在乳腺癌细胞中表现出高细胞摄取率,但在黑暗条件下没有表现出任何细胞毒性。nGO-血红素-Ce6 在 HO 存在下通过血红素的类过氧化物酶活性表现出高效的 O 生成能力。在体外细胞实验中,只有 nGO-血红素-Ce6 由于原位 O 生成能力,在常氧和缺氧条件下都能表现出相当的 PDT 效果。静脉注射后,nGO-血红素-Ce6 纳米系统由于其小尺寸(约 50nm)通过被动靶向作用在肿瘤中表现出高的积累。在肿瘤内,血红素从内源性 HO 中产生 O,并减轻缺氧,这一点从缺氧诱导因子-1α(一种突出的缺氧标志物)的表达减少得到证明。同时,催化生成的 O 通过辅助 Ce6 产生的光诱导 ROS 产生,显著提高了 PDT 在小鼠肿瘤异种移植模型中的治疗效果。与没有血红素的对照纳米系统(nGOCe6)相比,nGO-血红素-Ce6 的催化纳米系统表现出显著更高的肿瘤抑制能力。