Suppr超能文献

原发性人 T 细胞中亲电半胱氨酸相互作用的活性导向图谱。

An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells.

机构信息

Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.

Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.

出版信息

Cell. 2020 Aug 20;182(4):1009-1026.e29. doi: 10.1016/j.cell.2020.07.001. Epub 2020 Jul 29.

Abstract

Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.

摘要

天然或化学合成的亲电化合物对免疫细胞有深远的影响。这些化合物被认为通过半胱氨酸修饰来改变与免疫相关的蛋白质的功能;然而,我们对人类免疫蛋白质组中亲电敏感半胱氨酸的理解仍然有限。在这里,我们呈现了原发性人 T 细胞中易受亲电小分子共价修饰的半胱氨酸的全局图谱。在功能和结构上多样化的蛋白质上发现了 3000 多个共价连接的半胱氨酸,其中包括许多在免疫学中起基本作用的蛋白质。我们进一步表明,亲电化合物可以通过涉及蛋白质的直接功能干扰和/或降解的不同机制来损害 T 细胞的激活。我们的发现揭示了人类 T 细胞中丰富的可配体半胱氨酸含量,并指出亲电小分子是化学探针的丰富来源,最终可用于调节免疫过程及其相关疾病的治疗药物。

相似文献

1
An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells.
Cell. 2020 Aug 20;182(4):1009-1026.e29. doi: 10.1016/j.cell.2020.07.001. Epub 2020 Jul 29.
2
Applications of Reactive Cysteine Profiling.
Curr Top Microbiol Immunol. 2019;420:375-417. doi: 10.1007/82_2018_120.
3
Proteome-wide covalent ligand discovery in native biological systems.
Nature. 2016 Jun 23;534(7608):570-4. doi: 10.1038/nature18002. Epub 2016 Jun 15.
4
Multiplexed proteomic profiling of cysteine reactivity and ligandability in human T cells.
STAR Protoc. 2021 Apr 8;2(2):100458. doi: 10.1016/j.xpro.2021.100458. eCollection 2021 Jun 18.
5
Chemical proteomic identification of functional cysteines with atypical electrophile reactivities.
Tetrahedron Lett. 2021 Mar 16;67. doi: 10.1016/j.tetlet.2021.152861. Epub 2021 Feb 4.
6
Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells.
Sci Signal. 2016 Sep 13;9(445):rs10. doi: 10.1126/scisignal.aaf7694.
7
Nucleophilic covalent ligand discovery for the cysteine redoxome.
Nat Chem Biol. 2023 Nov;19(11):1309-1319. doi: 10.1038/s41589-023-01330-5. Epub 2023 May 29.
8
Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes.
Nat Chem. 2023 Nov;15(11):1616-1625. doi: 10.1038/s41557-023-01281-3. Epub 2023 Jul 17.
9
Targeted Protein Degradation by Electrophilic PROTACs that Stereoselectively and Site-Specifically Engage DCAF1.
J Am Chem Soc. 2022 Oct 12;144(40):18688-18699. doi: 10.1021/jacs.2c08964. Epub 2022 Sep 28.
10
Targeting interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK) using a novel covalent inhibitor PRN694.
J Biol Chem. 2015 Mar 6;290(10):5960-78. doi: 10.1074/jbc.M114.614891. Epub 2015 Jan 15.

引用本文的文献

1
Innate Immunity Reimagined: Metabolic Reprogramming as a Gateway to Novel Therapeutics.
Int J Biol Sci. 2025 Jul 28;21(11):5056-5078. doi: 10.7150/ijbs.114010. eCollection 2025.
2
Structure-based rational design of covalent probes.
Commun Chem. 2025 Aug 12;8(1):242. doi: 10.1038/s42004-025-01606-y.
3
Covalent Degraders of Immune Regulatory Transcription Factors IRF8 and IRF5.
bioRxiv. 2025 Aug 3:2025.08.03.668300. doi: 10.1101/2025.08.03.668300.
4
Cysteine allostery and autoinhibition govern human STING oligomer functionality.
Nat Chem Biol. 2025 Jul 3. doi: 10.1038/s41589-025-01951-y.
5
Probing the proteome.
Nat Biotechnol. 2025 Jul 1. doi: 10.1038/s41587-025-02737-2.
6
Identification of Anticancer ROS Targets by Cysteine Reactivity Protein Profiling.
Methods Mol Biol. 2025;2921:265-273. doi: 10.1007/978-1-0716-4502-4_14.
7
Microplate-Based Enzymatic Activity Assay Protocol Powered by Activity-Based Probes.
Methods Mol Biol. 2025;2921:119-137. doi: 10.1007/978-1-0716-4502-4_6.
8
Complexoform-restricted covalent TRMT112 ligands that allosterically agonize METTL5.
bioRxiv. 2025 May 25:2025.05.25.655995. doi: 10.1101/2025.05.25.655995.
9
Proteome-wide ligandability maps of drugs with diverse cysteine-reactive chemotypes.
Nat Commun. 2025 May 26;16(1):4863. doi: 10.1038/s41467-025-60068-x.
10
Protein Electrostatic Properties are Fine-Tuned Through Evolution.
Res Sq. 2025 Apr 28:rs.3.rs-6471091. doi: 10.21203/rs.3.rs-6471091/v1.

本文引用的文献

2
The reactome pathway knowledgebase.
Nucleic Acids Res. 2020 Jan 8;48(D1):D498-D503. doi: 10.1093/nar/gkz1031.
3
Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs.
Nat Chem. 2019 Dec;11(12):1113-1123. doi: 10.1038/s41557-019-0351-5. Epub 2019 Oct 28.
4
Quantitative interactomics in primary T cells unveils TCR signal diversification extent and dynamics.
Nat Immunol. 2019 Nov;20(11):1530-1541. doi: 10.1038/s41590-019-0489-8. Epub 2019 Oct 7.
5
PF-06651600, a Dual JAK3/TEC Family Kinase Inhibitor.
ACS Chem Biol. 2019 Jun 21;14(6):1235-1242. doi: 10.1021/acschembio.9b00188. Epub 2019 May 22.
6
Rapid and Reversible Knockdown of Endogenously Tagged Endosomal Proteins via an Optimized HaloPROTAC Degrader.
ACS Chem Biol. 2019 May 17;14(5):882-892. doi: 10.1021/acschembio.8b01016. Epub 2019 Apr 22.
7
Covalent modification of Cys-239 in β-tubulin by small molecules as a strategy to promote tubulin heterodimer degradation.
J Biol Chem. 2019 May 17;294(20):8161-8170. doi: 10.1074/jbc.RA118.006325. Epub 2019 Apr 2.
8
Reactive-cysteine profiling for drug discovery.
Curr Opin Chem Biol. 2019 Jun;50:29-36. doi: 10.1016/j.cbpa.2019.02.010. Epub 2019 Mar 18.
9
Dimethyl Fumarate Disrupts Human Innate Immune Signaling by Targeting the IRAK4-MyD88 Complex.
J Immunol. 2019 May 1;202(9):2737-2746. doi: 10.4049/jimmunol.1801627. Epub 2019 Mar 18.
10
Dimethyl fumarate, a two-edged drug: Current status and future directions.
Med Res Rev. 2019 Sep;39(5):1923-1952. doi: 10.1002/med.21567. Epub 2019 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验