Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
Cell Metab. 2020 Sep 1;32(3):391-403.e6. doi: 10.1016/j.cmet.2020.07.009. Epub 2020 Aug 6.
Cancer relapse begins when malignant cells pass through the extreme metabolic bottleneck of stress from chemotherapy and the byproducts of the massive cell death in the surrounding region. In acute myeloid leukemia, complete remissions are common, but few are cured. We tracked leukemia cells in vivo, defined the moment of maximal response following chemotherapy, captured persisting cells, and conducted unbiased metabolomics, revealing a metabolite profile distinct from the pre-chemo growth or post-chemo relapse phase. Persisting cells used glutamine in a distinctive manner, preferentially fueling pyrimidine and glutathione generation, but not the mitochondrial tricarboxylic acid cycle. Notably, malignant cell pyrimidine synthesis also required aspartate provided by specific bone marrow stromal cells. Blunting glutamine metabolism or pyrimidine synthesis selected against residual leukemia-initiating cells and improved survival in leukemia mouse models and patient-derived xenografts. We propose that timed cell-intrinsic or niche-focused metabolic disruption can exploit a transient vulnerability and induce metabolic collapse in cancer cells to overcome chemoresistance.
当恶性细胞通过化疗带来的极端代谢压力瓶颈以及周围区域大量细胞死亡的副产物时,癌症就会复发。在急性髓细胞白血病中,完全缓解很常见,但很少能治愈。我们在体内追踪白血病细胞,确定化疗后反应最强烈的时刻,捕捉到持续存在的细胞,并进行无偏代谢组学分析,揭示了与化疗前生长或化疗后复发阶段不同的代谢物特征。持续存在的细胞以独特的方式利用谷氨酰胺,优先为嘧啶和谷胱甘肽的生成提供燃料,而不是三羧酸循环。值得注意的是,恶性细胞嘧啶合成还需要特定骨髓基质细胞提供的天冬氨酸。抑制谷氨酰胺代谢或嘧啶合成可以选择性地针对残留的白血病起始细胞,并改善白血病小鼠模型和患者来源异种移植中的生存。我们提出,定时的细胞内在或龛位聚焦的代谢破坏可以利用短暂的脆弱性并诱导癌细胞的代谢崩溃,以克服化疗耐药性。