Suppr超能文献

诱导定时代谢崩溃以克服癌症化疗耐药性。

Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance.

机构信息

Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.

Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Cell Metab. 2020 Sep 1;32(3):391-403.e6. doi: 10.1016/j.cmet.2020.07.009. Epub 2020 Aug 6.

Abstract

Cancer relapse begins when malignant cells pass through the extreme metabolic bottleneck of stress from chemotherapy and the byproducts of the massive cell death in the surrounding region. In acute myeloid leukemia, complete remissions are common, but few are cured. We tracked leukemia cells in vivo, defined the moment of maximal response following chemotherapy, captured persisting cells, and conducted unbiased metabolomics, revealing a metabolite profile distinct from the pre-chemo growth or post-chemo relapse phase. Persisting cells used glutamine in a distinctive manner, preferentially fueling pyrimidine and glutathione generation, but not the mitochondrial tricarboxylic acid cycle. Notably, malignant cell pyrimidine synthesis also required aspartate provided by specific bone marrow stromal cells. Blunting glutamine metabolism or pyrimidine synthesis selected against residual leukemia-initiating cells and improved survival in leukemia mouse models and patient-derived xenografts. We propose that timed cell-intrinsic or niche-focused metabolic disruption can exploit a transient vulnerability and induce metabolic collapse in cancer cells to overcome chemoresistance.

摘要

当恶性细胞通过化疗带来的极端代谢压力瓶颈以及周围区域大量细胞死亡的副产物时,癌症就会复发。在急性髓细胞白血病中,完全缓解很常见,但很少能治愈。我们在体内追踪白血病细胞,确定化疗后反应最强烈的时刻,捕捉到持续存在的细胞,并进行无偏代谢组学分析,揭示了与化疗前生长或化疗后复发阶段不同的代谢物特征。持续存在的细胞以独特的方式利用谷氨酰胺,优先为嘧啶和谷胱甘肽的生成提供燃料,而不是三羧酸循环。值得注意的是,恶性细胞嘧啶合成还需要特定骨髓基质细胞提供的天冬氨酸。抑制谷氨酰胺代谢或嘧啶合成可以选择性地针对残留的白血病起始细胞,并改善白血病小鼠模型和患者来源异种移植中的生存。我们提出,定时的细胞内在或龛位聚焦的代谢破坏可以利用短暂的脆弱性并诱导癌细胞的代谢崩溃,以克服化疗耐药性。

相似文献

1
Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance.
Cell Metab. 2020 Sep 1;32(3):391-403.e6. doi: 10.1016/j.cmet.2020.07.009. Epub 2020 Aug 6.
3
Disruption of gap junctions attenuates acute myeloid leukemia chemoresistance induced by bone marrow mesenchymal stromal cells.
Oncogene. 2020 Feb;39(6):1198-1212. doi: 10.1038/s41388-019-1069-y. Epub 2019 Oct 24.
5
Microenvironmental Aspartate Preserves Leukemic Cells from Therapy-Induced Metabolic Collapse.
Cell Metab. 2020 Sep 1;32(3):321-323. doi: 10.1016/j.cmet.2020.08.008.
7
An ARC-Regulated IL1β/Cox-2/PGE2/β-Catenin/ARC Circuit Controls Leukemia-Microenvironment Interactions and Confers Drug Resistance in AML.
Cancer Res. 2019 Mar 15;79(6):1165-1177. doi: 10.1158/0008-5472.CAN-18-0921. Epub 2019 Jan 23.
8
JAK1/2 and BCL2 inhibitors synergize to counteract bone marrow stromal cell-induced protection of AML.
Blood. 2017 Aug 10;130(6):789-802. doi: 10.1182/blood-2016-02-699363. Epub 2017 Jun 15.
9
Inhibition of Mcl-1 with the pan-Bcl-2 family inhibitor (-)BI97D6 overcomes ABT-737 resistance in acute myeloid leukemia.
Blood. 2015 Jul 16;126(3):363-72. doi: 10.1182/blood-2014-10-604975. Epub 2015 Jun 4.
10
Roles of the bone marrow niche in hematopoiesis, leukemogenesis, and chemotherapy resistance in acute myeloid leukemia.
Hematology. 2018 Dec;23(10):729-739. doi: 10.1080/10245332.2018.1486064. Epub 2018 Jun 14.

引用本文的文献

2
Feasibility and Safety of Targeting Mitochondria Function and Metabolism in Acute Myeloid Leukemia.
Curr Pharmacol Rep. 2024 Dec;10(6):388-404. doi: 10.1007/s40495-024-00378-8. Epub 2024 Oct 4.
3
Niche-generated taurine is leukemic fuel.
Cell Res. 2025 Jun 9. doi: 10.1038/s41422-025-01136-1.
5
Metabolism in hematology: Technological advances open new perspectives on disease biology and treatment.
Hemasphere. 2025 May 19;9(5):e70134. doi: 10.1002/hem3.70134. eCollection 2025 May.
6
Lactate dehydrogenase A-coupled NAD regeneration is critical for acute myeloid leukemia cell survival.
Cancer Metab. 2025 May 19;13(1):22. doi: 10.1186/s40170-025-00392-4.
7
Bone marrow mesenchymal stromal cells support translation in refractory acute myeloid leukemia.
Cell Rep. 2025 Jan 28;44(1):115151. doi: 10.1016/j.celrep.2024.115151. Epub 2024 Dec 28.
9
α-Ketoglutarate dehydrogenase is a therapeutic vulnerability in acute myeloid leukemia.
Blood. 2025 Mar 27;145(13):1422-1436. doi: 10.1182/blood.2024025245.
10
Targeting pivotal amino acids metabolism for treatment of leukemia.
Heliyon. 2024 Nov 16;10(23):e40492. doi: 10.1016/j.heliyon.2024.e40492. eCollection 2024 Dec 15.

本文引用的文献

1
Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer.
Biochim Biophys Acta Mol Basis Dis. 2020 Jun 1;1866(6):165759. doi: 10.1016/j.bbadis.2020.165759. Epub 2020 Mar 6.
2
Critical role of ASCT2-mediated amino acid metabolism in promoting leukaemia development and progression.
Nat Metab. 2019 Mar;1(3):390-403. doi: 10.1038/s42255-019-0039-6. Epub 2019 Mar 11.
3
A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia.
Cell. 2019 Jun 13;177(7):1915-1932.e16. doi: 10.1016/j.cell.2019.04.040. Epub 2019 May 23.
4
Targeting Glutamine Metabolism and Redox State for Leukemia Therapy.
Clin Cancer Res. 2019 Jul 1;25(13):4079-4090. doi: 10.1158/1078-0432.CCR-18-3223. Epub 2019 Apr 2.
5
Single cell analysis of clonal architecture in acute myeloid leukaemia.
Leukemia. 2019 May;33(5):1113-1123. doi: 10.1038/s41375-018-0319-2. Epub 2018 Dec 19.
6
Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells.
Cell Metab. 2019 Feb 5;29(2):399-416.e10. doi: 10.1016/j.cmet.2018.10.014. Epub 2018 Nov 15.
7
Acute Myeloid Leukemia and the Bone Marrow Niche-Take a Closer Look.
Front Oncol. 2018 Oct 12;8:444. doi: 10.3389/fonc.2018.00444. eCollection 2018.
9
We're Not "DON" Yet: Optimal Dosing and Prodrug Delivery of .
Mol Cancer Ther. 2018 Sep;17(9):1824-1832. doi: 10.1158/1535-7163.MCT-17-1148.
10
MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis.
Nucleic Acids Res. 2018 Jul 2;46(W1):W486-W494. doi: 10.1093/nar/gky310.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验