Suppr超能文献

工程纳米颗粒在重组流感疫苗中的应用。

Engineered Nanoparticle Applications for Recombinant Influenza Vaccines.

机构信息

Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.

Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Diseases Research, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4L8, Canada.

出版信息

Mol Pharm. 2021 Feb 1;18(2):576-592. doi: 10.1021/acs.molpharmaceut.0c00383. Epub 2020 Aug 17.

Abstract

Influenza viruses cause seasonal epidemics and represent a pandemic risk. With current vaccine methods struggling to protect populations against emerging strains, there is a demand for a next-generation flu vaccine capable of providing broad protection. Recombinant biotechnology, combined with nanomedicine techniques, could address this demand by increasing immunogenicity and directing immune responses toward conserved antigenic targets on the virus. Various nanoparticle candidates have been tested for use in vaccines, including virus-like particles, protein and carbohydrate nanoconstructs, antigen-carrying lipid particles, and synthetic and inorganic particles modified for antigen presentation. These methods have yielded some promising results, including protection in animal models against antigenically distinct influenza strains, production of antibodies with broad reactivity, and activation of potent T cell responses. Based on the evidence of current research, it is feasible that the next generation of influenza vaccines will combine recombinant antigens with nanoparticle carriers.

摘要

流感病毒会引发季节性流行,且存在引发大流行的风险。由于当前的疫苗接种方法难以保护人群免受新出现的毒株的侵害,因此需要开发能够提供广泛保护的新一代流感疫苗。重组生物技术与纳米医学技术相结合,通过提高免疫原性并将免疫反应引导到病毒上保守的抗原性靶标上,可能满足这一需求。已经有多种纳米颗粒候选物被测试用于疫苗,包括病毒样颗粒、蛋白质和碳水化合物纳米结构、携带抗原的脂质颗粒,以及为抗原呈递而修饰的合成和无机颗粒。这些方法已经取得了一些有前景的结果,包括在动物模型中针对具有不同抗原性的流感株的保护作用、产生具有广泛反应性的抗体以及激活有效的 T 细胞反应。根据目前研究的证据,下一代流感疫苗将重组抗原与纳米颗粒载体结合使用是可行的。

相似文献

1
Engineered Nanoparticle Applications for Recombinant Influenza Vaccines.
Mol Pharm. 2021 Feb 1;18(2):576-592. doi: 10.1021/acs.molpharmaceut.0c00383. Epub 2020 Aug 17.
3
Influenza Neuraminidase Characteristics and Potential as a Vaccine Target.
Front Immunol. 2021 Nov 16;12:786617. doi: 10.3389/fimmu.2021.786617. eCollection 2021.
4
Novel Platforms for the Development of a Universal Influenza Vaccine.
Front Immunol. 2018 Mar 23;9:600. doi: 10.3389/fimmu.2018.00600. eCollection 2018.
7
Universal influenza vaccines: from viruses to nanoparticles.
Expert Rev Vaccines. 2018 Nov;17(11):967-976. doi: 10.1080/14760584.2018.1541408. Epub 2018 Nov 2.
10
Heterosubtypic protection against influenza A induced by adenylate cyclase toxoids delivering conserved HA2 subunit of hemagglutinin.
Antiviral Res. 2013 Jan;97(1):24-35. doi: 10.1016/j.antiviral.2012.09.008. Epub 2012 Oct 2.

引用本文的文献

2
Novel Antigen-Presenting Cell-Targeted Nanoparticles Enhance Split Vaccine Immunity Through Microneedles Inoculation.
Int J Nanomedicine. 2025 Apr 30;20:5529-5549. doi: 10.2147/IJN.S502724. eCollection 2025.
3
Progress and Challenges in HIV-1 Vaccine Research: A Comprehensive Overview.
Vaccines (Basel). 2025 Jan 31;13(2):148. doi: 10.3390/vaccines13020148.
4
New insights for the development of efficient DNA vaccines.
Microb Biotechnol. 2024 Nov;17(11):e70053. doi: 10.1111/1751-7915.70053.
5
Intranasal Multiepitope PD-L1-siRNA-Based Nanovaccine: The Next-Gen COVID-19 Immunotherapy.
Adv Sci (Weinh). 2024 Oct;11(40):e2404159. doi: 10.1002/advs.202404159. Epub 2024 Aug 8.
6
Design, synthesis and biological evaluation of sulfamethazine derivatives as potent neuraminidase inhibitors.
Future Med Chem. 2024;16(12):1205-1218. doi: 10.1080/17568919.2024.2342688. Epub 2024 May 10.
7
Adjuvanted nanoliposomes displaying six hemagglutinins and neuraminidases as an influenza virus vaccine.
Cell Rep Med. 2024 Mar 19;5(3):101433. doi: 10.1016/j.xcrm.2024.101433. Epub 2024 Feb 23.
8
Progress towards the Development of a Universal Influenza Vaccine.
Viruses. 2022 Jul 30;14(8):1684. doi: 10.3390/v14081684.
9
Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance.
Vaccines (Basel). 2022 Jul 14;10(7):1124. doi: 10.3390/vaccines10071124.
10
Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats.
Adv Nanobiomed Res. 2022 Mar;2(3). doi: 10.1002/anbr.202100122. Epub 2021 Dec 7.

本文引用的文献

1
The potential of nanoparticles for the immunization against viral infections.
J Mater Chem B. 2015 Jun 28;3(24):4767-4779. doi: 10.1039/c5tb00618j. Epub 2015 May 21.
2
Next-generation influenza vaccines: opportunities and challenges.
Nat Rev Drug Discov. 2020 Apr;19(4):239-252. doi: 10.1038/s41573-019-0056-x. Epub 2020 Feb 14.
3
Broadly protective human antibodies that target the active site of influenza virus neuraminidase.
Science. 2019 Oct 25;366(6464):499-504. doi: 10.1126/science.aay0678.
7
Influenza Virus Neuraminidase Structure and Functions.
Front Microbiol. 2019 Jan 29;10:39. doi: 10.3389/fmicb.2019.00039. eCollection 2019.
8
Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses.
Nat Immunol. 2019 Mar;20(3):362-372. doi: 10.1038/s41590-018-0305-x. Epub 2019 Feb 11.
10
A malaria vaccine adjuvant based on recombinant antigen binding to liposomes.
Nat Nanotechnol. 2018 Dec;13(12):1174-1181. doi: 10.1038/s41565-018-0271-3. Epub 2018 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验