Ludwig Institute for Cancer Research Lausanne, University of Lausanne, CH-1066 Epalinges, Switzerland.
Department of Oncology, CHUV, UNIL CHUV, CH-1066 Epalinges, Lausanne, Switzerland.
Bioinformatics. 2021 May 5;37(6):882-884. doi: 10.1093/bioinformatics/btaa755.
STACAS is a computational method for the identification of integration anchors in the Seurat environment, optimized for the integration of single-cell (sc) RNA-seq datasets that share only a subset of cell types. We demonstrate that by (i) correcting batch effects while preserving relevant biological variability across datasets, (ii) filtering aberrant integration anchors with a quantitative distance measure and (iii) constructing optimal guide trees for integration, STACAS can accurately align scRNA-seq datasets composed of only partially overlapping cell populations.
Source code and R package available at https://github.com/carmonalab/STACAS; Docker image available at https://hub.docker.com/repository/docker/mandrea1/stacas_demo.
STACAS 是一种在 Seurat 环境中识别整合锚点的计算方法,针对仅共享部分细胞类型的单细胞(sc)RNA-seq 数据集的整合进行了优化。我们证明,通过(i)在跨数据集保留相关生物学变异性的同时纠正批次效应,(ii)使用定量距离度量筛选异常整合锚点,以及(iii)构建用于整合的最优引导树,STACAS 可以准确地对齐仅由部分重叠细胞群组成的 scRNA-seq 数据集。
源代码和 R 包可在 https://github.com/carmonalab/STACAS 上获得;Docker 镜像可在 https://hub.docker.com/repository/docker/mandrea1/stacas_demo 上获得。