Suppr超能文献

STACAS:在 Seurat 中进行亚型锚定校正以整合单细胞 RNA-seq 数据。

STACAS: Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq data.

机构信息

Ludwig Institute for Cancer Research Lausanne, University of Lausanne, CH-1066 Epalinges, Switzerland.

Department of Oncology, CHUV, UNIL CHUV, CH-1066 Epalinges, Lausanne, Switzerland.

出版信息

Bioinformatics. 2021 May 5;37(6):882-884. doi: 10.1093/bioinformatics/btaa755.

Abstract

SUMMARY

STACAS is a computational method for the identification of integration anchors in the Seurat environment, optimized for the integration of single-cell (sc) RNA-seq datasets that share only a subset of cell types. We demonstrate that by (i) correcting batch effects while preserving relevant biological variability across datasets, (ii) filtering aberrant integration anchors with a quantitative distance measure and (iii) constructing optimal guide trees for integration, STACAS can accurately align scRNA-seq datasets composed of only partially overlapping cell populations.

AVAILABILITY AND IMPLEMENTATION

Source code and R package available at https://github.com/carmonalab/STACAS; Docker image available at https://hub.docker.com/repository/docker/mandrea1/stacas_demo.

摘要

摘要

STACAS 是一种在 Seurat 环境中识别整合锚点的计算方法,针对仅共享部分细胞类型的单细胞(sc)RNA-seq 数据集的整合进行了优化。我们证明,通过(i)在跨数据集保留相关生物学变异性的同时纠正批次效应,(ii)使用定量距离度量筛选异常整合锚点,以及(iii)构建用于整合的最优引导树,STACAS 可以准确地对齐仅由部分重叠细胞群组成的 scRNA-seq 数据集。

可用性和实现

源代码和 R 包可在 https://github.com/carmonalab/STACAS 上获得;Docker 镜像可在 https://hub.docker.com/repository/docker/mandrea1/stacas_demo 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ce/8098019/3043a6cb7ba3/btaa755f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验