Suppr超能文献

利用胸部X光片进行深度学习以识别肺癌筛查计算机断层扫描的高危吸烟者:预测模型的开发与验证

Deep Learning Using Chest Radiographs to Identify High-Risk Smokers for Lung Cancer Screening Computed Tomography: Development and Validation of a Prediction Model.

作者信息

Lu Michael T, Raghu Vineet K, Mayrhofer Thomas, Aerts Hugo J W L, Hoffmann Udo

机构信息

Massachusetts General Hospital Cardiovascular Imaging Research Center, Brigham and Women's Hospital Program for Artificial Intelligence in Medicine, and Harvard Medical School, Boston, Massachusetts (M.T.L., V.K.R., U.H.).

Harvard Medical School, Boston, Massachusetts,and Stralsund University of Applied Sciences, Stralsund, Germany (T.M.).

出版信息

Ann Intern Med. 2020 Nov 3;173(9):704-713. doi: 10.7326/M20-1868. Epub 2020 Sep 1.

Abstract

BACKGROUND

Lung cancer screening with chest computed tomography (CT) reduces lung cancer death. Centers for Medicare & Medicaid Services (CMS) eligibility criteria for lung cancer screening with CT require detailed smoking information and miss many incident lung cancers. An automated deep-learning approach based on chest radiograph images may identify more smokers at high risk for lung cancer who could benefit from screening with CT.

OBJECTIVE

To develop and validate a convolutional neural network (CXR-LC) that predicts long-term incident lung cancer using data commonly available in the electronic medical record (EMR) (chest radiograph, age, sex, and whether currently smoking).

DESIGN

Risk prediction study.

SETTING

U.S. lung cancer screening trials.

PARTICIPANTS

The CXR-LC model was developed in the PLCO (Prostate, Lung, Colorectal, and Ovarian) Cancer Screening Trial ( = 41 856). The final CXR-LC model was validated in additional PLCO smokers ( = 5615, 12-year follow-up) and NLST (National Lung Screening Trial) heavy smokers ( = 5493, 6-year follow-up). Results are reported for validation data sets only.

MEASUREMENTS

Up to 12-year lung cancer incidence predicted by CXR-LC.

RESULTS

The CXR-LC model had better discrimination (area under the receiver-operating characteristic curve [AUC]) for incident lung cancer than CMS eligibility (PLCO AUC, 0.755 vs. 0.634; < 0.001). The CXR-LC model's performance was similar to that of PLCO, a state-of-the-art risk score with 11 inputs, in both the PLCO data set (CXR-LC AUC of 0.755 vs. PLCO AUC of 0.751) and the NLST data set (0.659 vs. 0.650). When compared in equal-sized screening populations, CXR-LC was more sensitive than CMS eligibility in the PLCO data set (74.9% vs. 63.8%; = 0.012) and missed 30.7% fewer incident lung cancers. On decision curve analysis, CXR-LC had higher net benefit than CMS eligibility and similar benefit to PLCO.

LIMITATION

Validation in lung cancer screening trials and not a clinical setting.

CONCLUSION

The CXR-LC model identified smokers at high risk for incident lung cancer, beyond CMS eligibility and using information commonly available in the EMR.

PRIMARY FUNDING SOURCE

None.

摘要

背景

胸部计算机断层扫描(CT)肺癌筛查可降低肺癌死亡率。医疗保险和医疗补助服务中心(CMS)的CT肺癌筛查资格标准要求详细的吸烟信息,且会遗漏许多新发肺癌病例。基于胸部X光片图像的自动化深度学习方法可能会识别出更多可从CT筛查中受益的肺癌高危吸烟者。

目的

开发并验证一种卷积神经网络(CXR-LC),该网络使用电子病历(EMR)中常用的数据(胸部X光片、年龄、性别以及当前是否吸烟)来预测长期新发肺癌。

设计

风险预测研究。

设置

美国肺癌筛查试验。

参与者

CXR-LC模型在前列腺、肺癌、结直肠癌和卵巢癌筛查试验(PLCO)(n = 41856)中开发。最终的CXR-LC模型在另外的PLCO吸烟者(n = 5615,12年随访)和国家肺癌筛查试验(NLST)重度吸烟者(n = 5493,6年随访)中进行验证。结果仅报告验证数据集的情况。

测量

CXR-LC预测的长达12年的肺癌发病率。

结果

CXR-LC模型对新发肺癌的区分能力(受试者操作特征曲线下面积[AUC])优于CMS资格标准(PLCO的AUC为0.755对0.634;P < 0.001)。在PLCO数据集(CXR-LC的AUC为0.755对PLCO的AUC为0.751)和NLST数据集(0.659对0.650)中,CXR-LC模型的性能与具有11个输入的先进风险评分PLCO相似。在同等规模的筛查人群中进行比较时,CXR-LC在PLCO数据集中比CMS资格标准更敏感(74.9%对63.8%;P = 0.012),遗漏的新发肺癌病例少30.7%。在决策曲线分析中,CXR-LC的净效益高于CMS资格标准,与PLCO的效益相似。

局限性

在肺癌筛查试验而非临床环境中进行验证。

结论

CXR-LC模型识别出了超出CMS资格标准且使用EMR中常用信息的肺癌高危吸烟者。

主要资金来源

无。

相似文献

4
Assessing eligibility for lung cancer screening using parsimonious ensemble machine learning models: A development and validation study.
PLoS Med. 2023 Oct 3;20(10):e1004287. doi: 10.1371/journal.pmed.1004287. eCollection 2023 Oct.
5
Deep Learning to Assess Long-term Mortality From Chest Radiographs.
JAMA Netw Open. 2019 Jul 3;2(7):e197416. doi: 10.1001/jamanetworkopen.2019.7416.
6
Risk prediction models for selection of lung cancer screening candidates: A retrospective validation study.
PLoS Med. 2017 Apr 4;14(4):e1002277. doi: 10.1371/journal.pmed.1002277. eCollection 2017 Apr.
7
Evaluation of the lung cancer risks at which to screen ever- and never-smokers: screening rules applied to the PLCO and NLST cohorts.
PLoS Med. 2014 Dec 2;11(12):e1001764. doi: 10.1371/journal.pmed.1001764. eCollection 2014 Dec.
8
Selection criteria for lung-cancer screening.
N Engl J Med. 2013 Feb 21;368(8):728-36. doi: 10.1056/NEJMoa1211776.
9
Implications of Nine Risk Prediction Models for Selecting Ever-Smokers for Computed Tomography Lung Cancer Screening.
Ann Intern Med. 2018 Jul 3;169(1):10-19. doi: 10.7326/M17-2701. Epub 2018 May 15.

引用本文的文献

3
Progress and challenges of artificial intelligence in lung cancer clinical translation.
NPJ Precis Oncol. 2025 Jul 1;9(1):210. doi: 10.1038/s41698-025-00986-7.
5
A systematic review and meta-analysis of lung cancer risk prediction models.
Acta Oncol. 2025 May 12;64:661-671. doi: 10.2340/1651-226X.2025.42529.
6
Enhancing lung cancer detection through integrated deep learning and transformer models.
Sci Rep. 2025 May 4;15(1):15614. doi: 10.1038/s41598-025-00516-2.
7
Role of AI in empowering and redefining the oncology care landscape: perspective from a developing nation.
Front Digit Health. 2025 Mar 4;7:1550407. doi: 10.3389/fdgth.2025.1550407. eCollection 2025.
8
Hallmarks of artificial intelligence contributions to precision oncology.
Nat Cancer. 2025 Mar;6(3):417-431. doi: 10.1038/s43018-025-00917-2. Epub 2025 Mar 7.

本文引用的文献

3
Integrating AI into radiology workflow: levels of research, production, and feedback maturity.
J Med Imaging (Bellingham). 2020 Jan;7(1):016502. doi: 10.1117/1.JMI.7.1.016502. Epub 2020 Feb 11.
4
Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial.
N Engl J Med. 2020 Feb 6;382(6):503-513. doi: 10.1056/NEJMoa1911793. Epub 2020 Jan 29.
5
Trends in smoking documentation rates in safety net clinics.
Health Serv Res. 2020 Apr;55(2):170-177. doi: 10.1111/1475-6773.13259. Epub 2020 Jan 13.
6
How to Read Articles That Use Machine Learning: Users' Guides to the Medical Literature.
JAMA. 2019 Nov 12;322(18):1806-1816. doi: 10.1001/jama.2019.16489.
7
A simple, step-by-step guide to interpreting decision curve analysis.
Diagn Progn Res. 2019 Oct 4;3:18. doi: 10.1186/s41512-019-0064-7. eCollection 2019.
8
Lung cancer screening: enhancing risk stratification and minimising harms by incorporating information from screening results.
Thorax. 2019 Sep;74(9):825-827. doi: 10.1136/thoraxjnl-2019-213156. Epub 2019 Jul 30.
9
Deep Learning to Assess Long-term Mortality From Chest Radiographs.
JAMA Netw Open. 2019 Jul 3;2(7):e197416. doi: 10.1001/jamanetworkopen.2019.7416.
10
Evaluation of USPSTF Lung Cancer Screening Guidelines Among African American Adult Smokers.
JAMA Oncol. 2019 Sep 1;5(9):1318-1324. doi: 10.1001/jamaoncol.2019.1402.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验