Suppr超能文献

双定位 WHIRLY1 通过协调异羟肟酸合酶 1、苯丙氨酸解氨酶 1 和 S-腺苷甲硫氨酸依赖型甲基转移酶 1 影响水杨酸生物合成。

Dual-Localized WHIRLY1 Affects Salicylic Acid Biosynthesis via Coordination of ISOCHORISMATE SYNTHASE1, PHENYLALANINE AMMONIA LYASE1, and -ADENOSYL-L-METHIONINE-DEPENDENT METHYLTRANSFERASE1.

机构信息

Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China.

Department of Molecular Phytopathology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany.

出版信息

Plant Physiol. 2020 Dec;184(4):1884-1899. doi: 10.1104/pp.20.00964. Epub 2020 Sep 8.

Abstract

Salicylic acid (SA) influences developmental senescence and is spatiotemporally controlled by various mechanisms, including biosynthesis, transport, and conjugate formation. Altered localization of Arabidopsis WHIRLY1 (WHY1), a repressor of leaf natural senescence, in the nucleus or chloroplast causes a perturbation in SA homeostasis, resulting in adverse plant senescence phenotypes. loss-of-function mutation resulted in SA peaking 5 d earlier compared to wild-type plants, which accumulated SA at 42 d after germination. SA accumulation coincided with an early leaf-senescence phenotype, which could be prevented by ectopic expression of the nuclear WHY1 isoform (nWHY1). However, expressing the plastid WHY1 isoform (pWHY1) greatly enhanced cellular SA levels. Transcriptome analysis in the loss-of-function mutant background following expression of either pWHY1 or nWHY1 indicated that hormone metabolism-related genes were most significantly altered. The pWHY1 isoform predominantly affected stress-related gene expression, whereas nWHY1 primarily controlled developmental gene expression. Chromatin immunoprecipitation-quantitative PCR assays indicated that nWHY1 directly binds to the promoter region of (), thus activating its expression at later developmental stages, but that it indirectly activates () expression via ethylene response factor 109 (ERF109). Moreover, nWHY1 repressed expression of -encoding gene () via R2R3-MYB member 15 (MYB15) during the early stages of development. Interestingly, rising SA levels exerted a feedback effect by inducing nWHY1 modification and pWHY1 accumulation. Thus, the alteration of WHY1 organelle isoforms and the feedback of SA are involved in a circularly integrated regulatory network during developmental or stress-induced senescence in Arabidopsis.

摘要

水杨酸(SA)影响发育性衰老,其时空分布受到多种机制的控制,包括生物合成、运输和共轭形成。拟南芥 WHIRLY1(WHY1)的定位改变,该蛋白是叶片自然衰老的抑制剂,在核或叶绿体中引起 SA 动态平衡的破坏,导致植物衰老表型恶化。与野生型植物相比, 缺失功能突变导致 SA 峰值提前 5 天,而野生型植物在萌发后 42 天积累 SA。SA 的积累与早期叶片衰老表型一致,该表型可以通过核 WHY1 同工型(nWHY1)的异位表达来预防。然而,表达质体 WHY1 同工型(pWHY1)大大增加了细胞内 SA 的水平。在 缺失功能突变体背景下表达 pWHY1 或 nWHY1 后进行转录组分析表明,激素代谢相关基因变化最显著。pWHY1 同工型主要影响与应激相关的基因表达,而 nWHY1 主要控制发育基因表达。染色质免疫沉淀-定量 PCR 分析表明,nWHY1 直接结合 ()的启动子区域,从而在后期发育阶段激活其表达,但通过乙烯响应因子 109(ERF109)间接激活 ()的表达。此外,nWHY1 通过 R2R3-MYB 成员 15(MYB15)在发育早期抑制 ()编码基因的表达。有趣的是,SA 水平的升高通过诱导 nWHY1 修饰和 pWHY1 积累产生反馈效应。因此,WHY1 细胞器同工型的改变和 SA 的反馈参与了拟南芥发育或应激诱导衰老过程中的环状整合调控网络。

相似文献

2
HO as a Feedback Signal on Dual-Located WHIRLY1 Associates with Leaf Senescence in .
Cells. 2019 Dec 6;8(12):1585. doi: 10.3390/cells8121585.
3
Biosynthesis of salicylic acid in plants.
Plant Signal Behav. 2009 Jun;4(6):493-6. doi: 10.4161/psb.4.6.8392. Epub 2009 Jun 12.
6
7
Phosphorylation of WHIRLY1 by CIPK14 Shifts Its Localization and Dual Functions in Arabidopsis.
Mol Plant. 2017 May 1;10(5):749-763. doi: 10.1016/j.molp.2017.03.011. Epub 2017 Apr 12.
8
The isochorismate pathway is negatively regulated by salicylic acid signaling in O3-exposed Arabidopsis.
Planta. 2007 Oct;226(5):1277-85. doi: 10.1007/s00425-007-0556-5. Epub 2007 Jun 23.

引用本文的文献

2
Comprehensive transcriptome analysis of AP2/ERFs in reveals the role of -mediated organic acid metabolism pathway in flower senescence.
Front Plant Sci. 2024 Sep 26;15:1467232. doi: 10.3389/fpls.2024.1467232. eCollection 2024.
3
Genome-Wide Identification and Molecular Evolutionary History of the Whirly Family Genes in .
Plants (Basel). 2024 Aug 13;13(16):2243. doi: 10.3390/plants13162243.
5
Evolution of in the angiosperms: sequence, splicing, and expression in a clade of early transitional mycoheterotrophic orchids.
Front Plant Sci. 2024 Jun 28;15:1241515. doi: 10.3389/fpls.2024.1241515. eCollection 2024.
7
WHIRLY protein functions in plants.
Food Energy Secur. 2022 Mar 17;12(2):e379. doi: 10.1002/fes3.379. eCollection 2023 Mar.
8
Alternaria TeA toxin activates a chloroplast retrograde signaling pathway to facilitate JA-dependent pathogenicity.
Plant Commun. 2024 Mar 11;5(3):100775. doi: 10.1016/j.xplc.2023.100775. Epub 2023 Dec 4.
9
Leaf senescence: progression, regulation, and application.
Mol Hortic. 2021 Jun 16;1(1):5. doi: 10.1186/s43897-021-00006-9.

本文引用的文献

1
HO as a Feedback Signal on Dual-Located WHIRLY1 Associates with Leaf Senescence in .
Cells. 2019 Dec 6;8(12):1585. doi: 10.3390/cells8121585.
2
PBS3 and EPS1 Complete Salicylic Acid Biosynthesis from Isochorismate in Arabidopsis.
Mol Plant. 2019 Dec 2;12(12):1577-1586. doi: 10.1016/j.molp.2019.11.005. Epub 2019 Nov 22.
3
PUB25 and PUB26 Promote Plant Freezing Tolerance by Degrading the Cold Signaling Negative Regulator MYB15.
Dev Cell. 2019 Oct 21;51(2):222-235.e5. doi: 10.1016/j.devcel.2019.08.008. Epub 2019 Sep 19.
4
Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid.
Science. 2019 Aug 2;365(6452):498-502. doi: 10.1126/science.aaw1720.
5
Impaired PSII Proteostasis Promotes Retrograde Signaling via Salicylic Acid.
Plant Physiol. 2019 Aug;180(4):2182-2197. doi: 10.1104/pp.19.00483. Epub 2019 Jun 3.
6
Control of retrograde signalling by protein import and cytosolic folding stress.
Nat Plants. 2019 May;5(5):525-538. doi: 10.1038/s41477-019-0415-y. Epub 2019 May 6.
7
A MYB Triad Controls Primary and Phenylpropanoid Metabolites for Pollen Coat Patterning.
Plant Physiol. 2019 May;180(1):87-108. doi: 10.1104/pp.19.00009. Epub 2019 Feb 12.
8
Current understanding of GUN1: a key mediator involved in biogenic retrograde signaling.
Plant Cell Rep. 2019 Jul;38(7):819-823. doi: 10.1007/s00299-019-02383-4. Epub 2019 Jan 22.
10
Plastid-to-Nucleus Retrograde Signalling during Chloroplast Biogenesis Does Not Require ABI4.
Plant Physiol. 2019 Jan;179(1):18-23. doi: 10.1104/pp.18.01047. Epub 2018 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验