Suppr超能文献

使用YOLOv3在CT图像上自动检测肺结节:基于模拟数据和患者数据的开发与评估

Automatic detection of pulmonary nodules on CT images with YOLOv3: development and evaluation using simulated and patient data.

作者信息

Liu Chenyang, Hu Shen-Chiang, Wang Chunhao, Lafata Kyle, Yin Fang-Fang

机构信息

Medical Physics Graduate Program, Duke Kunshan University, Kunshan, China.

Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.

出版信息

Quant Imaging Med Surg. 2020 Oct;10(10):1917-1929. doi: 10.21037/qims-19-883.

Abstract

BACKGROUND

To develop a high-efficiency pulmonary nodule computer-aided detection (CAD) method for localization and diameter estimation.

METHODS

The developed CAD method centralizes a novel convolutional neural network (CNN) algorithm, You Only Look Once (YOLO) v3, as a deep learning approach. This method is featured by two distinct properties: (I) an automatic multi-scale feature extractor for nodule feature screening, and (II) a feature-based bounding box generator for nodule localization and diameter estimation. Two independent studies were performed to train and evaluate this CAD method. One study comprised of a computer simulation that utilized computer-based ground truth. In this study, 300 CT scans were simulated by Cardiac-torso (XCAT) digital phantom. Spherical nodules of various sizes (i.e., 3-10 mm in diameter) were randomly implanted within the lung region of the simulated images-the second study utilized human-based ground truth in patients. The CAD method was developed by CT scans sourced from the LIDC-IDRI database. CT scans with slice thickness above 2.5 mm were excluded, leaving 888 CT images for analysis. A 10-fold cross-validation procedure was implemented in both studies to evaluate network hyper-parameterization and generalization. The overall accuracy of the CAD method was evaluated by the detection sensitivities, in response to average false positives (FPs) per image. In the patient study, the detection accuracy was further compared against 9 recently published CAD studies using free-receiver response operating characteristic (FROC) curve analysis. Localization and diameter estimation accuracies were quantified by the mean and standard error between the predicted value and ground truth.

RESULTS

The average results among the 10 cross-validation folds in both studies demonstrated the CAD method achieved high detection accuracy. The sensitivity was 99.3% (FPs =1), and improved to 100% (FPs =4) in the simulation study. The corresponding sensitivities were 90.0% and 95.4% in the patient study, displaying superiority over several conventional and CNN-based lung nodule CAD methods in the FROC curve analysis. Nodule localization and diameter estimation errors were less than 1 mm in both studies. The developed CAD method achieved high computational efficiency: it yields nodule-specific quantitative values (i.e., number, existence confidence, central coordinates, and diameter) within 0.1 s for 2D CT slice inputs.

CONCLUSIONS

The reported results suggest that the developed lung pulmonary nodule CAD method possesses high accuracies of nodule localization and diameter estimation. The high computational efficiency enables its potential clinical application in the future.

摘要

背景

开发一种用于肺结节定位和直径估计的高效计算机辅助检测(CAD)方法。

方法

所开发的CAD方法集中了一种新颖的卷积神经网络(CNN)算法,即You Only Look Once(YOLO)v3,作为一种深度学习方法。该方法具有两个显著特性:(I)用于结节特征筛选的自动多尺度特征提取器,以及(II)用于结节定位和直径估计的基于特征的边界框生成器。进行了两项独立研究来训练和评估这种CAD方法。一项研究包括利用基于计算机的真实数据的计算机模拟。在这项研究中,通过心脏躯干(XCAT)数字体模模拟了300次CT扫描。将各种大小(即直径3 - 10毫米)的球形结节随机植入模拟图像的肺部区域——第二项研究利用患者的基于人体的真实数据。CAD方法是通过源自LIDC-IDRI数据库的CT扫描开发的。排除切片厚度超过2.5毫米的CT扫描,留下888幅CT图像用于分析。在两项研究中都实施了10折交叉验证程序,以评估网络超参数化和泛化能力。CAD方法的总体准确性通过检测灵敏度来评估,以响应每张图像的平均假阳性(FP)。在患者研究中,使用自由响应者操作特征(FROC)曲线分析将检测准确性与最近发表的9项CAD研究进行了进一步比较。通过预测值与真实值之间的均值和标准误差对定位和直径估计准确性进行量化。

结果

两项研究中10次交叉验证折的平均结果表明,CAD方法实现了高检测准确性。在模拟研究中,灵敏度为99.3%(FP = 1),当FP = 4时提高到100%。在患者研究中,相应的灵敏度分别为90.0%和95.4%,在FROC曲线分析中显示出优于几种传统的和基于CNN的肺结节CAD方法。在两项研究中,结节定位和直径估计误差均小于1毫米。所开发的CAD方法实现了高计算效率:对于2D CT切片输入,它能在0.1秒内生成结节特异性定量值(即数量、存在置信度、中心坐标和直径)。

结论

报告结果表明,所开发的肺结节CAD方法具有较高的结节定位和直径估计准确性。高计算效率使其在未来具有潜在的临床应用价值。

相似文献

2
Deep learning-based pulmonary nodule detection: Effect of slab thickness in maximum intensity projections at the nodule candidate detection stage.
Comput Methods Programs Biomed. 2020 Nov;196:105620. doi: 10.1016/j.cmpb.2020.105620. Epub 2020 Jun 20.
3
A new computationally efficient CAD system for pulmonary nodule detection in CT imagery.
Med Image Anal. 2010 Jun;14(3):390-406. doi: 10.1016/j.media.2010.02.004. Epub 2010 Feb 19.
5
Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models.
Comput Biol Med. 2012 Nov;42(11):1098-109. doi: 10.1016/j.compbiomed.2012.09.002. Epub 2012 Sep 26.
6
The effect of pulmonary vessel suppression on computerized detection of nodules in chest CT scans.
Med Phys. 2020 Oct;47(10):4917-4927. doi: 10.1002/mp.14401. Epub 2020 Aug 8.
7
Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection.
IEEE Trans Med Imaging. 2020 Mar;39(3):797-805. doi: 10.1109/TMI.2019.2935553. Epub 2019 Aug 15.
9
A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning.
PLoS One. 2019 Jul 12;14(7):e0219369. doi: 10.1371/journal.pone.0219369. eCollection 2019.

引用本文的文献

1
Enhanced pulmonary nodule detection with U-Net, YOLOv8, and swin transformer.
BMC Med Imaging. 2025 Jul 1;25(1):247. doi: 10.1186/s12880-025-01784-0.
2
An anthropomorphic diagnosis system of pulmonary nodules using weak annotation-based deep learning.
Comput Med Imaging Graph. 2024 Dec;118:102438. doi: 10.1016/j.compmedimag.2024.102438. Epub 2024 Oct 10.
3
Pulmonary nodule detection in low dose computed tomography using a medical-to-medical transfer learning approach.
J Med Imaging (Bellingham). 2024 Jul;11(4):044502. doi: 10.1117/1.JMI.11.4.044502. Epub 2024 Jul 9.
4
One-stop detection of anterior cruciate ligament injuries on magnetic resonance imaging using deep learning with multicenter validation.
Quant Imaging Med Surg. 2024 May 1;14(5):3405-3416. doi: 10.21037/qims-23-1539. Epub 2024 Apr 10.
5
Healthcare As a Service (HAAS): CNN-based cloud computing model for ubiquitous access to lung cancer diagnosis.
Heliyon. 2023 Oct 27;9(11):e21520. doi: 10.1016/j.heliyon.2023.e21520. eCollection 2023 Nov.
7
Deep learning for predicting epidermal growth factor receptor mutations of non-small cell lung cancer on PET/CT images.
Quant Imaging Med Surg. 2023 Mar 1;13(3):1286-1299. doi: 10.21037/qims-22-760. Epub 2023 Feb 6.

本文引用的文献

1
Digital phantoms for characterizing inconsistencies among radiomics extraction toolboxes.
Biomed Phys Eng Express. 2020 Mar 2;6(2):025016. doi: 10.1088/2057-1976/ab779c.
2
Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram.
Adv Exp Med Biol. 2020;1213:59-72. doi: 10.1007/978-3-030-33128-3_4.
4
Radiotherapy Treatment Planning in the Age of AI: Are We Ready Yet?
Technol Cancer Res Treat. 2019 Jan-Dec;18:1533033819894577. doi: 10.1177/1533033819894577.
6
An Exploratory Radiomics Approach to Quantifying Pulmonary Function in CT Images.
Sci Rep. 2019 Aug 8;9(1):11509. doi: 10.1038/s41598-019-48023-5.
7
DOSED: A deep learning approach to detect multiple sleep micro-events in EEG signal.
J Neurosci Methods. 2019 Jun 1;321:64-78. doi: 10.1016/j.jneumeth.2019.03.017. Epub 2019 Apr 1.
8
A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection.
Med Phys. 2018 May;45(5):2097-2107. doi: 10.1002/mp.12846. Epub 2018 Mar 25.
9
3D multi-view convolutional neural networks for lung nodule classification.
PLoS One. 2017 Nov 16;12(11):e0188290. doi: 10.1371/journal.pone.0188290. eCollection 2017.
10
Detection and classification of the breast abnormalities in digital mammograms via regional Convolutional Neural Network.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1230-1233. doi: 10.1109/EMBC.2017.8037053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验