Suppr超能文献

酶驱动的 Janus 血小板细胞机器人用于主动和靶向药物递送。

Enzyme-powered Janus platelet cell robots for active and targeted drug delivery.

机构信息

Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA.

Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.

出版信息

Sci Robot. 2020 Jun 10;5(43). doi: 10.1126/scirobotics.aba6137.

Abstract

Transforming natural cells into functional biocompatible robots capable of active movement is expected to enhance the functions of the cells and revolutionize the development of synthetic micromotors. However, present cell-based micromotor systems commonly require the propulsion capabilities of rigid motors, external fields, or harsh conditions, which may compromise biocompatibility and require complex actuation equipment. Here, we report on an endogenous enzyme-powered Janus platelet micromotor (JPL-motor) system prepared by immobilizing urease asymmetrically onto the surface of natural platelet cells. This Janus distribution of urease on platelet cells enables uneven decomposition of urea in biofluids to generate enhanced chemophoretic motion. The cell surface engineering with urease has negligible impact on the functional surface proteins of platelets, and hence, the resulting JPL-motors preserve the intrinsic biofunctionalities of platelets, including effective targeting of cancer cells and bacteria. The efficient propulsion of JPL-motors in the presence of the urea fuel greatly enhances their binding efficiency with these biological targets and improves their therapeutic efficacy when loaded with model anticancer or antibiotic drugs. Overall, asymmetric enzyme immobilization on the platelet surface leads to a biogenic microrobotic system capable of autonomous movement using biological fuel. The ability to impart self-propulsion onto biological cells, such as platelets, and to load these cellular robots with a variety of functional components holds considerable promise for developing multifunctional cell-based micromotors for a variety of biomedical applications.

摘要

将天然细胞转化为能够主动运动的功能性生物相容性机器人有望增强细胞的功能,并彻底改变合成微马达的发展。然而,目前基于细胞的微马达系统通常需要刚性马达、外部场或苛刻条件的推进能力,这可能会损害生物相容性并需要复杂的致动设备。在这里,我们报告了一种由酶促 Janus 血小板微马达 (JPL-马达) 系统,该系统通过将脲酶不对称地固定在天然血小板细胞表面来制备。血小板细胞上脲酶的这种 Janus 分布使生物流体中尿素的不均匀分解产生增强的化学泳动。用脲酶进行细胞表面工程对血小板的功能性表面蛋白几乎没有影响,因此,所得到的 JPL-马达保留了血小板的固有生物功能,包括对癌细胞和细菌的有效靶向。在尿素燃料存在下,JPL-马达的高效推进极大地提高了它们与这些生物靶标的结合效率,并在加载模型抗癌或抗生素药物时提高了它们的治疗效果。总之,不对称酶固定在血小板表面上导致能够使用生物燃料进行自主运动的生物发生微机器人系统。赋予生物细胞(如血小板)自推进能力,并将这些细胞机器人与各种功能组件一起装载,为开发用于各种生物医学应用的多功能基于细胞的微马达提供了巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验