Suppr超能文献

在专用多针孔 SPECT 系统中纳入拟准直器视角,以提高成像性能。

Inclusion of quasi-vertex views in a brain-dedicated multi-pinhole SPECT system for improved imaging performance.

机构信息

Department of Radiology, University of Massachusetts Medical School, Worcester, MA, 01655, United States of America.

Department of Imaging, Dana Farber Cancer Institute, Boston, MA, 02215, United States of America.

出版信息

Phys Med Biol. 2021 Jan 27;66(3):035007. doi: 10.1088/1361-6560/abc22e.

Abstract

With brain-dedicated multi-detector systems employing pinhole apertures the usage of detectors facing the top of the patient's head (i.e. quasi-vertex (QV) views) can provide the advantage of additional viewing from close to the brain for improved detector coverage. In this paper, we report the results of simulation and reconstruction studies to investigate the impact of the QV views on the imaging performance of AdaptiSPECT-C, a brain-dedicated stationary SPECT system under development. In this design, both primary and scatter photons from regions located inferior to the brain can contribute to SPECT projections acquired by the QV views, and thus degrade AdaptiSPECT-C imaging performance. In this work, we determined the proportion, origin, and nature (i.e. primary, scatter, and multiple-scatter) of counts emitted from structures within the head and throughout the body contributing to projections from the different AdaptiSPECT-C detector rings, as well as from a true vertex view detector. We simulated phantoms used to assess different aspects of image quality (i.e. uniform activity concentration sphere, and Derenzo), as well as anthropomorphic phantoms with different count levels emulating clinical I activity distributions (i.e. DaTscan and perfusion). We determined that attenuation and scatter in the patient's body greatly diminish the probability of the photons emitted outside the volume of interest reaching to detectors and being recorded within the 15% photopeak energy window. In addition, we demonstrated that the inclusion of the residual of such counts in the system acquisition does not degrade visual interpretation or quantitative analysis. The addition of the QV detectors improves volumetric sensitivity, angular sampling, and spatial resolution leading to significant enhancement in image quality, especially in the striato-thalamic and superior regions of the brain. Besides, the use of QV detectors improves the recovery of clinically relevant metrics such as the striatal binding ratio and mean activity in selected cerebral structures. Our findings proving the usefulness of the QV ring for brain imaging with I agents can be generalized to other commonly used SPECT imaging agents labelled with isotopes, such as Tc and likely In.

摘要

使用配备针孔孔径的专用脑部多探测器系统,使用面向患者头部顶部的探测器(即准顶点 (QV) 视图)可以提供从靠近脑部的额外视角,从而改善探测器覆盖范围。在本文中,我们报告了模拟和重建研究的结果,以研究 QV 视图对正在开发的专用脑部 SPECT 系统 AdaptiSPECT-C 的成像性能的影响。在这种设计中,来自脑部下方区域的初级和散射光子都可以为 QV 视图采集的 SPECT 投影做出贡献,从而降低 AdaptiSPECT-C 的成像性能。在这项工作中,我们确定了从头部和全身的结构中发出的计数的比例、来源和性质(即初级、散射和多次散射),这些计数会贡献到来自不同 AdaptiSPECT-C 探测器环的投影,以及来自真实顶点视图探测器的投影。我们模拟了用于评估不同图像质量方面的体模(即均匀活性浓度球体和 Derenzo),以及具有不同计数水平的模拟临床 I 活性分布的人体模型(即 DaTscan 和灌注)。我们确定,患者体内的衰减和散射大大降低了发射到探测器外部并在 15%光电峰能量窗口内被记录的感兴趣体积内光子的概率。此外,我们证明了将此类计数的残余物包含在系统采集过程中不会降低视觉解释或定量分析的质量。添加 QV 探测器可以提高容积灵敏度、角采样和空间分辨率,从而显著提高图像质量,尤其是在纹状体-丘脑和大脑上部区域。此外,使用 QV 探测器可以提高在选定脑结构中与临床相关的指标(如纹状体结合比和平均活性)的恢复。我们的研究结果证明了 QV 环在 I 剂脑成像中的有用性,可以推广到其他常用的放射性同位素标记的 SPECT 成像剂,如 Tc 和可能的 In。

相似文献

3
5
Performance analysis of a high-sensitivity multi-pinhole cardiac SPECT system with hemi-ellipsoid detectors.
Med Phys. 2019 Jan;46(1):116-126. doi: 10.1002/mp.13277. Epub 2018 Nov 29.
6
Investigation of Axial and Angular Sampling in Multi-Detector Pinhole-SPECT Brain Imaging.
IEEE Trans Med Imaging. 2020 Dec;39(12):4209-4224. doi: 10.1109/TMI.2020.3015079. Epub 2020 Nov 30.

引用本文的文献

1
Examination of aperture layout designs for an adaptive-stationary multi-pinhole brain-dedicated SPECT system.
Med Phys. 2025 Jun;52(6):3734-3759. doi: 10.1002/mp.17866. Epub 2025 May 11.
3
Characterization and Assessment of Projection Probability Density Function and Enhanced Sampling in Self-Collimation SPECT.
IEEE Trans Med Imaging. 2023 Sep;42(9):2787-2801. doi: 10.1109/TMI.2023.3265874. Epub 2023 Aug 31.
7
Design Study of an Ultrahigh Resolution Brain SPECT System Using a Synthetic Compound-Eye Camera Design With Micro-Slit and Micro-Ring Apertures.
IEEE Trans Med Imaging. 2021 Dec;40(12):3711-3727. doi: 10.1109/TMI.2021.3096920. Epub 2021 Nov 30.
9
Investigation of Axial and Angular Sampling in Multi-Detector Pinhole-SPECT Brain Imaging.
IEEE Trans Med Imaging. 2020 Dec;39(12):4209-4224. doi: 10.1109/TMI.2020.3015079. Epub 2020 Nov 30.

本文引用的文献

1
Investigation of Axial and Angular Sampling in Multi-Detector Pinhole-SPECT Brain Imaging.
IEEE Trans Med Imaging. 2020 Dec;39(12):4209-4224. doi: 10.1109/TMI.2020.3015079. Epub 2020 Nov 30.
2
Neuroimaging and neurophysiological evaluation of severity of Parkinson's disease.
J Clin Neurosci. 2020 Apr;74:135-140. doi: 10.1016/j.jocn.2020.02.006. Epub 2020 Feb 15.
3
Visualizing prolonged hyperperfusion in post-stroke epilepsy using postictal subtraction SPECT.
J Cereb Blood Flow Metab. 2021 Jan;41(1):146-156. doi: 10.1177/0271678X20902742. Epub 2020 Feb 16.
4
Optimized sampling for high resolution multi-pinhole brain SPECT with stationary detectors.
Phys Med Biol. 2020 Jan 10;65(1):015002. doi: 10.1088/1361-6560/ab5bc6.
5
6
Simulations of a Multi-Pinhole SPECT Collimator for Clinical Dopamine Transporter (DAT) Imaging.
IEEE Trans Radiat Plasma Med Sci. 2018 Sep;2(5):444-451. doi: 10.1109/TRPMS.2018.2831208. Epub 2018 Apr 30.
7
Optimizing the Diagnosis of Parkinsonian Syndromes With I-Ioflupane Brain SPECT.
AJR Am J Roentgenol. 2019 Aug;213(2):243-253. doi: 10.2214/AJR.19.21088. Epub 2019 Apr 17.
10
Performance evaluation of a novel brain-dedicated SPECT system.
EJNMMI Phys. 2018 Mar 1;5(1):4. doi: 10.1186/s40658-018-0203-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验