Suppr超能文献

自适应静止多针孔脑专用单光子发射计算机断层扫描(SPECT)系统的孔径布局设计研究。

Examination of aperture layout designs for an adaptive-stationary multi-pinhole brain-dedicated SPECT system.

作者信息

Kalluri Kesava S, Zeraatkar Navid, Auer Benjamin, Pells Sophia, Pretorius P Hendrik, Richards Garrett R, May Micaehla, Momsen Neil, Doty Kimberly, Gonzales Maria Ruiz, Fromme Timothy, Truong Kevin, Kupinski Matthew A, Kuo Phillip H, Furenlid Lars R, King Michael A

机构信息

Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.

Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.

出版信息

Med Phys. 2025 Jun;52(6):3734-3759. doi: 10.1002/mp.17866. Epub 2025 May 11.

Abstract

BACKGROUND

Organ specific multi-pinhole (MPH) SPECT imaging could potentially improve the sensitivity/resolution trade-off and image quality (IQ), while facilitating the use of a variety of imaging-agents, thereby addressing diagnostic, quantitative, and research clinical needs.

PURPOSE

Investigate through simulation six different MPH aperture-layout designs, plus variations in projection multiplexing (MUX) and truncation, for a prototype brain-dedicated MPH SPECT system, named AdaptiSPECT-C, to understand tradeoffs for such choices and guide selection of an optimal design for construction of the actual AdaptiSPECT-C system.

METHODS

The prototype AdaptiSPECT-C system investigated herein employs 25 MPH gamma-camera modules arranged in three rings to image a 21 cm diameter spherical volume-of-interest (VOI). With a focal point (FP) to center of detector distances of 38.7 cm, the pinhole aperture diameters were constrained to provide a calculated spatial resolution of 8 mm at the FP. Variations in the number of pinhole (PH) apertures, FP to aperture distance, PH layout, temporal changes in MUX, and extent-of-truncation of the projection images were investigated. Designs of the aperture layouts were used to create inputs for GATE and analytic simulations of a sphere phantom with uniform Tc-99 m activity filling the VOI, to assess MUX, detector utilization, and uniformity in reconstructed slices. We investigated axial and angular sampling using customized-spherical Defrise and Derenzo phantoms. Finally, we assessed reconstructed IQ and activity quantification in reconstructions of analytic simulations of the XCAT digital anthropomorphic phantom with activity and attenuation distributions mimicking clinical-SPECT brain-perfusion imaging. For each phantom, comparison was also made to imaging with a dual-headed SPECT system with low-energy high-resolution (LEHR) parallel-hole (Vertex high resolution [VXHR]) collimators.

RESULTS

Sensitivity at the FP (SENS) for a Tc-99 m source in air calculated relative to a clinical dual-headed SPECT system with VXHR collimators was 2.7x higher for a single aperture with no MUX or truncation, increased to 5.7x for five apertures with limited VOI truncation and MUX, and decreased to 2.5x with 13 apertures with limited MUX. For the spherical tub phantom, limited truncation did not impact uniformity, MUX decreased it, and temporal shuttering of projections helped lessen this impact. Visually, the 6.4 mm rods were generally well differentiated for the single central apertures. For designs with four or more apertures, all the 4.8 mm rods were well differentiated visually. Projection images of the XCAT phantom acquired for an imaging time that would result in the minimum clinically recommended count-level for brain perfusion imaging with parallel-hole collimators, showed low MUX of the brain structures for all of the MPH aperture layout designs. The best reconstructions for the XCAT phantom, both visually and quantitatively, were obtained with the design using 4- or 5-PH-apertures for the aperture-layout design that included MUX and some truncation of imaging.

CONCLUSIONS

We determined for a prototype brain-dedicated MPH SPECT employing 25 camera modules in three rings with different PH layout designs imaging a 21 cm diameter spherical VOI, that a system with five apertures per module provided the best SENS, and IQ of the XCAT brain phantom, both visually and numerically.

摘要

背景

器官特异性多针孔(MPH)单光子发射计算机断层显像(SPECT)成像可能会改善灵敏度/分辨率的权衡以及图像质量(IQ),同时便于使用多种成像剂,从而满足诊断、定量和临床研究需求。

目的

通过模拟研究用于名为AdaptiSPECT-C的原型脑专用MPH SPECT系统的六种不同MPH孔径布局设计,以及投影复用(MUX)和截断的变化,以了解这些选择之间的权衡,并为实际AdaptiSPECT-C系统的构建指导最佳设计的选择。

方法

本文研究的原型AdaptiSPECT-C系统采用25个MPH伽马相机模块排列成三个环,以对直径21厘米的球形感兴趣体积(VOI)进行成像。焦点(FP)到探测器中心的距离为38.7厘米,针孔孔径直径受到限制,以便在FP处提供8毫米的计算空间分辨率。研究了针孔(PH)孔径数量、FP到孔径的距离、PH布局、MUX的时间变化以及投影图像的截断程度的变化。孔径布局设计用于创建输入,以用于GATE以及对VOI充满均匀Tc-99m活度的球形体模进行解析模拟,以评估MUX、探测器利用率和重建切片中的均匀性。我们使用定制的球形Defrise和Derenzo体模研究了轴向和角度采样。最后,我们在具有模拟临床SPECT脑灌注成像的活度和衰减分布的XCAT数字人体体模的解析模拟重建中评估了重建的IQ和活度定量。对于每个体模,还与使用低能高分辨率(LEHR)平行孔(Vertex高分辨率[VXHR])准直器的双头SPECT系统成像进行了比较。

结果

相对于具有VXHR准直器的临床双头SPECT系统,对于空气中的Tc-99m源,单个无MUX或截断的孔径在FP处的灵敏度(SENS)高2.7倍,对于五个有限VOI截断和MUX的孔径增加到5.7倍,对于13个有限MUX的孔径降低到2.5倍。对于球形管体模,有限的截断不影响均匀性,MUX会降低均匀性,投影的时间快门有助于减轻这种影响。从视觉上看,对于单个中心孔径,6.4毫米的棒通常能很好地区分。对于具有四个或更多孔径的设计,所有4.8毫米的棒在视觉上都能很好地区分。对于XCAT体模,在与使用平行孔准直器进行脑灌注成像的临床推荐最小计数水平相对应的成像时间下获取的投影图像显示,对于所有MPH孔径布局设计,脑结构的MUX都很低。对于XCAT体模,在视觉和定量方面,最佳重建是使用包括MUX和一些成像截断的孔径布局设计中的4个或5个PH孔径获得的。

结论

对于采用25个相机模块排列成三个环、具有不同PH布局设计、对直径21厘米的球形VOI进行成像的原型脑专用MPH SPECT,我们确定每个模块有五个孔径的系统在视觉和数值上都提供了最佳的SENS和XCAT脑体模的IQ。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验