Suppr超能文献

非同源 DNA 末端连接的分子基础和疾病相关性。

The molecular basis and disease relevance of non-homologous DNA end joining.

机构信息

Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.

Department of Biochemistry & Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.

出版信息

Nat Rev Mol Cell Biol. 2020 Dec;21(12):765-781. doi: 10.1038/s41580-020-00297-8. Epub 2020 Oct 19.

Abstract

Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.

摘要

非同源 DNA 末端连接 (NHEJ) 是细胞周期中大多数情况下任何类型 DNA 双链断裂 (DSB) 的主要修复机制,也是抗原受体发育所必需的。NHEJ 的缺陷导致对电离辐射敏感和淋巴细胞丢失。NHEJ 的最关键步骤是联会,或 DSB 的两个 DNA 末端的并置,因为所有后续步骤都依赖于此。最近的发现表明,与末端加工步骤一样,联会可以通过几种机制来实现。在这篇综述中,我们首先讨论 NHEJ 和其他 DSB 修复途径之间的修复途径选择。然后,我们将 NHEJ 联会机制的最新见解与 NHEJ 的其他步骤(如 DNA 末端加工和连接)的最新进展结合起来进行讨论。最后,我们讨论了与 NHEJ 相关的人类疾病,包括遗传性疾病和肿瘤,这些疾病是由于 NHEJ 不同步骤的罕见失败而产生的。

相似文献

1
The molecular basis and disease relevance of non-homologous DNA end joining.
Nat Rev Mol Cell Biol. 2020 Dec;21(12):765-781. doi: 10.1038/s41580-020-00297-8. Epub 2020 Oct 19.
2
Non-homologous DNA end joining and alternative pathways to double-strand break repair.
Nat Rev Mol Cell Biol. 2017 Aug;18(8):495-506. doi: 10.1038/nrm.2017.48. Epub 2017 May 17.
3
Holding it together: DNA end synapsis during non-homologous end joining.
DNA Repair (Amst). 2023 Oct;130:103553. doi: 10.1016/j.dnarep.2023.103553. Epub 2023 Aug 8.
4
Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
Mutat Res Genet Toxicol Environ Mutagen. 2021 Jul;867:503372. doi: 10.1016/j.mrgentox.2021.503372. Epub 2021 Jun 12.
5
Mechanisms of DNA double strand break repair and chromosome aberration formation.
Cytogenet Genome Res. 2004;104(1-4):14-20. doi: 10.1159/000077461.
6
Deficiency of XLF and PAXX prevents DNA double-strand break repair by non-homologous end joining in lymphocytes.
Cell Cycle. 2017 Feb;16(3):286-295. doi: 10.1080/15384101.2016.1253640. Epub 2016 Nov 10.
7
Essential factors for incompatible DNA end joining at chromosomal DNA double strand breaks in vivo.
PLoS One. 2011;6(12):e28756. doi: 10.1371/journal.pone.0028756. Epub 2011 Dec 14.
8
Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway.
Annu Rev Biochem. 2021 Jun 20;90:137-164. doi: 10.1146/annurev-biochem-080320-110356. Epub 2021 Feb 8.
10
Regulation of DNA double-strand break repair pathway choice: a new focus on 53BP1.
J Zhejiang Univ Sci B. 2021 Jan 15;22(1):38-46. doi: 10.1631/jzus.B2000306.

引用本文的文献

3
Tumor irradiation induced immunogenic response: the impact of DNA damage induction and misrepair.
Radiat Oncol. 2025 Aug 21;20(1):133. doi: 10.1186/s13014-025-02711-x.
6
UCHL3: a crucial deubiquitinase in DNA damage repair and tumor progression.
Cancer Cell Int. 2025 Jul 21;25(1):276. doi: 10.1186/s12935-025-03884-x.
8
Pol θ-mediated end-joining uses microhomologies containing mismatches.
Nat Commun. 2025 Jul 2;16(1):6085. doi: 10.1038/s41467-025-61258-3.
10
Targeting synthetic lethality between non-homologous end joining and radiation in very-high-risk medulloblastoma.
Cell Rep Med. 2025 Jul 15;6(7):102202. doi: 10.1016/j.xcrm.2025.102202. Epub 2025 Jun 24.

本文引用的文献

1
Structural snapshots of human DNA polymerase μ engaged on a DNA double-strand break.
Nat Commun. 2020 Sep 22;11(1):4784. doi: 10.1038/s41467-020-18506-5.
2
CTCF orchestrates long-range cohesin-driven V(D)J recombinational scanning.
Nature. 2020 Oct;586(7828):305-310. doi: 10.1038/s41586-020-2578-0. Epub 2020 Jul 27.
3
Activation of DNA-PK by hairpinned DNA ends reveals a stepwise mechanism of kinase activation.
Nucleic Acids Res. 2020 Sep 18;48(16):9098-9108. doi: 10.1093/nar/gkaa614.
4
The recent advances in non-homologous end-joining through the lens of lymphocyte development.
DNA Repair (Amst). 2020 Oct;94:102874. doi: 10.1016/j.dnarep.2020.102874. Epub 2020 Jun 25.
5
RNF8 has both KU-dependent and independent roles in chromosomal break repair.
Nucleic Acids Res. 2020 Jun 19;48(11):6032-6052. doi: 10.1093/nar/gkaa380.
6
Mechanistic basis for microhomology identification and genome scarring by polymerase theta.
Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8476-8485. doi: 10.1073/pnas.1921791117. Epub 2020 Mar 31.
7
DNA-PKcs chemical inhibition versus genetic mutation: Impact on the junctional repair steps of V(D)J recombination.
Mol Immunol. 2020 Apr;120:93-100. doi: 10.1016/j.molimm.2020.01.018. Epub 2020 Feb 26.
9
ATM, ATR and DNA-PKcs kinases-the lessons from the mouse models: inhibition ≠ deletion.
Cell Biosci. 2020 Jan 29;10:8. doi: 10.1186/s13578-020-0376-x. eCollection 2020.
10
Cutting antiparallel DNA strands in a single active site.
Nat Struct Mol Biol. 2020 Feb;27(2):119-126. doi: 10.1038/s41594-019-0363-2. Epub 2020 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验