Suppr超能文献

卵巢癌腹膜转移蕴藏受 FOXM1 和 EGFR/ERBB2 信号调控的治疗弱点。

Peritoneal Spread of Ovarian Cancer Harbors Therapeutic Vulnerabilities Regulated by FOXM1 and EGFR/ERBB2 Signaling.

机构信息

Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin.

Department of Systems Biology, Columbia University, New York, New York.

出版信息

Cancer Res. 2020 Dec 15;80(24):5554-5568. doi: 10.1158/0008-5472.CAN-19-3717. Epub 2020 Oct 21.

Abstract

Peritoneal spread is the primary mechanism of metastasis of ovarian cancer, and survival of ovarian cancer cells in the peritoneal cavity as nonadherent spheroids and their adherence to the mesothelium of distant organs lead to cancer progression, metastasis, and mortality. However, the mechanisms that govern this metastatic process in ovarian cancer cells remain poorly understood. In this study, we cultured ovarian cancer cell lines in adherent and nonadherent conditions and analyzed changes in mRNA and protein levels to identify mechanisms of tumor cell survival and proliferation in adherent and nonadherent cells. EGFR or ERBB2 upregulated ZEB1 in nonadherent cells, which caused resistance to cell death and increased tumor-initiating capacity. Conversely, Forkhead box M1 (FOXM1) was required for the induction of integrin β1, integrin-α V, and integrin-α 5 for adhesion of cancer cells. FOXM1 also upregulated ZEB1, which could act as a feedback inhibitor of FOXM1, and caused the transition of adherent cells to nonadherent cells. Strikingly, the combinatorial treatment with lapatinib [dual kinase inhibitor of EGFR (ERBB1) and ERBB2] and thiostrepton (FOXM1 inhibitor) reduced growth and peritoneal spread of ovarian cancer cells more effectively than either single-agent treatment . In conclusion, these results demonstrate that FOXM1 and EGFR/ERBB2 pathways are key points of vulnerability for therapy to disrupt peritoneal spread and adhesion of ovarian cancer cells. SIGNIFICANCE: This study describes the mechanism exhibited by ovarian cancer cells required for adherent cell transition to nonadherent form during peritoneal spread and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5554/F1.large.jpg.

摘要

腹膜扩散是卵巢癌转移的主要机制,卵巢癌细胞在腹腔中作为非黏附球体存活,并黏附在远处器官的间皮上,导致癌症进展、转移和死亡。然而,控制卵巢癌细胞这种转移过程的机制仍知之甚少。在这项研究中,我们在黏附和非黏附条件下培养卵巢癌细胞系,并分析 mRNA 和蛋白质水平的变化,以确定黏附和非黏附细胞中肿瘤细胞存活和增殖的机制。在非黏附细胞中,表皮生长因子受体(EGFR)或 ERBB2 上调了 ZEB1,导致细胞死亡抵抗和肿瘤起始能力增加。相反,叉头框 M1(FOXM1)是诱导整合素β1、整合素-α V 和整合素-α 5 黏附癌细胞所必需的。FOXM1 还上调了 ZEB1,ZEB1 可以作为 FOXM1 的反馈抑制剂,导致黏附细胞向非黏附细胞的转变。引人注目的是,与单独使用拉帕替尼(EGFR(ERBB1)和 ERBB2 的双重激酶抑制剂)和硫代丝菌素(FOXM1 抑制剂)相比,联合治疗更有效地抑制了卵巢癌细胞的生长和腹膜扩散。总之,这些结果表明,FOXM1 和 EGFR/ERBB2 途径是治疗破坏卵巢癌细胞腹膜扩散和黏附的关键弱点。意义:本研究描述了卵巢癌细胞在腹膜扩散和转移过程中从黏附细胞向非黏附形式转变所必需的机制。

相似文献

1
Peritoneal Spread of Ovarian Cancer Harbors Therapeutic Vulnerabilities Regulated by FOXM1 and EGFR/ERBB2 Signaling.
Cancer Res. 2020 Dec 15;80(24):5554-5568. doi: 10.1158/0008-5472.CAN-19-3717. Epub 2020 Oct 21.
2
Targeting FOXM1 Improves Cytotoxicity of Paclitaxel and Cisplatinum in Platinum-Resistant Ovarian Cancer.
Int J Gynecol Cancer. 2017 Oct;27(8):1602-1609. doi: 10.1097/IGC.0000000000001063.
4
Aberrant activation of ERK/FOXM1 signaling cascade triggers the cell migration/invasion in ovarian cancer cells.
PLoS One. 2011;6(8):e23790. doi: 10.1371/journal.pone.0023790. Epub 2011 Aug 17.
5
Targeting Foxm1 Improves Cytotoxicity of Paclitaxel and Cisplatinum in Platinum-Resistant Ovarian Cancer.
Int J Gynecol Cancer. 2017 Jun;27(5):887-894. doi: 10.1097/IGC.0000000000000969.
8
Thiostrepton confers protection against reactive oxygen species-related apoptosis by restraining FOXM1-triggerred development of gastric cancer.
Free Radic Biol Med. 2022 Nov 20;193(Pt 1):385-404. doi: 10.1016/j.freeradbiomed.2022.09.018. Epub 2022 Sep 22.
9
Molecular mechanism of Forkhead box M1 inhibition by thiostrepton in breast cancer cells.
Oncol Rep. 2019 Sep;42(3):953-962. doi: 10.3892/or.2019.7225. Epub 2019 Jul 8.

引用本文的文献

1
Progress of targeted FOX family therapy in ovarian cancer.
Front Pharmacol. 2025 Jul 17;16:1604998. doi: 10.3389/fphar.2025.1604998. eCollection 2025.
2
Reversible downregulation of MYC in a spheroid model of metastatic epithelial ovarian cancer.
Cancer Gene Ther. 2025 Jan;32(1):83-94. doi: 10.1038/s41417-024-00850-z. Epub 2024 Nov 21.
3
Research progress of epithelial-mesenchymal transformation-related transcription factors in peritoneal metastases.
J Cancer. 2024 Aug 19;15(16):5367-5375. doi: 10.7150/jca.98409. eCollection 2024.
5
Tumor microenvironment-induced FOXM1 regulates ovarian cancer stemness.
Cell Death Dis. 2024 May 28;15(5):370. doi: 10.1038/s41419-024-06767-7.
8
Transcriptional Landscape of 3D vs. 2D Ovarian Cancer Cell Models.
Cancers (Basel). 2023 Jun 26;15(13):3350. doi: 10.3390/cancers15133350.
9
Afatinib combined with anti-PD1 enhances immunotherapy of hepatocellular carcinoma ERBB2/STAT3/PD-L1 signaling.
Front Oncol. 2023 May 30;13:1198118. doi: 10.3389/fonc.2023.1198118. eCollection 2023.
10
RNF112-mediated FOXM1 ubiquitination suppresses the proliferation and invasion of gastric cancer.
JCI Insight. 2023 Jun 8;8(11):e166698. doi: 10.1172/jci.insight.166698.

本文引用的文献

1
miRNA551b-3p Activates an Oncostatin Signaling Module for the Progression of Triple-Negative Breast Cancer.
Cell Rep. 2019 Dec 24;29(13):4389-4406.e10. doi: 10.1016/j.celrep.2019.11.085.
2
Interaction of tumor cells and astrocytes promotes breast cancer brain metastases through TGF-β2/ANGPTL4 axes.
NPJ Precis Oncol. 2019 Oct 3;3:24. doi: 10.1038/s41698-019-0094-1. eCollection 2019.
3
ERBB signaling in CTCs of ovarian cancer and glioblastoma.
Genes Cancer. 2017 Nov;8(11-12):746-751. doi: 10.18632/genesandcancer.162.
4
Transcriptional Regulation of Brain-derived Neurotrophic Factor Coding Exon IX: ROLE OF NUCLEAR RESPIRATORY FACTOR 2.
J Biol Chem. 2016 Oct 21;291(43):22583-22593. doi: 10.1074/jbc.M116.742304. Epub 2016 Sep 13.
5
Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells.
Tumour Biol. 2016 Oct;37(10):13101-13110. doi: 10.1007/s13277-016-5240-6. Epub 2016 Jul 23.
6
Direct Upregulation of STAT3 by MicroRNA-551b-3p Deregulates Growth and Metastasis of Ovarian Cancer.
Cell Rep. 2016 May 17;15(7):1493-1504. doi: 10.1016/j.celrep.2016.04.034. Epub 2016 May 5.
7
8
Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin.
Cell. 2014 Aug 14;158(4):929-944. doi: 10.1016/j.cell.2014.06.049. Epub 2014 Aug 7.
9
Hematogenous metastasis of ovarian cancer: rethinking mode of spread.
Cancer Cell. 2014 Jul 14;26(1):77-91. doi: 10.1016/j.ccr.2014.05.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验