Suppr超能文献

采用介观模拟方法理解支架蛋白在细胞信号转导中的功能。

Understand the Functions of Scaffold Proteins in Cell Signaling by a Mesoscopic Simulation Method.

机构信息

Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York.

Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York.

出版信息

Biophys J. 2020 Nov 17;119(10):2116-2126. doi: 10.1016/j.bpj.2020.10.002. Epub 2020 Oct 14.

Abstract

Scaffold proteins are central players in regulating the spatial-temporal organization of many important signaling pathways in cells. They offer physical platforms to downstream signaling proteins so that their transient interactions in a crowded and heterogeneous environment of cytosol can be greatly facilitated. However, most scaffold proteins tend to simultaneously bind more than one signaling molecule, which leads to the spatial assembly of multimeric protein complexes. The kinetics of these protein oligomerizations are difficult to quantify by traditional experimental approaches. To understand the functions of scaffold proteins in cell signaling, we developed a, to our knowledge, new hybrid simulation algorithm in which both spatial organization and binding kinetics of proteins were implemented. We applied this new technique to a simple network system that contains three molecules. One molecule in the network is a scaffold protein, whereas the other two are its binding targets in the downstream signaling pathway. Each of the three molecules in the system contains two binding motifs that can interact with each other and are connected by a flexible linker. By applying the new simulation method to the model, we show that the scaffold proteins will promote not only thermodynamics but also kinetics of cell signaling given the premise that the interaction between the two signaling molecules is transient. Moreover, by changing the flexibility of the linker between two binding motifs, our results suggest that the conformational fluctuations in a scaffold protein play a positive role in recruiting downstream signaling molecules. In summary, this study showcases the capability of computational simulation in understanding the general principles of scaffold protein functions.

摘要

支架蛋白是调节细胞内许多重要信号通路时空组织的核心分子。它们为下游信号蛋白提供物理平台,使它们在细胞质拥挤和异质的环境中的短暂相互作用能够得到极大促进。然而,大多数支架蛋白往往同时结合不止一个信号分子,这导致多聚体蛋白复合物的空间组装。这些蛋白质寡聚化的动力学很难通过传统的实验方法来定量。为了理解支架蛋白在细胞信号转导中的功能,我们开发了一种混合模拟算法,据我们所知,这种算法同时实现了蛋白质的空间组织和结合动力学。我们将这项新技术应用于一个简单的网络系统,该系统包含三个分子。网络中的一个分子是支架蛋白,而另外两个是下游信号通路中的结合靶点。系统中的三个分子中的每一个都包含两个可以相互作用的结合基序,它们通过一个柔性接头连接。通过将新的模拟方法应用于该模型,我们表明,在两个信号分子之间的相互作用是瞬时的前提下,支架蛋白不仅可以促进热力学,还可以促进细胞信号转导的动力学。此外,通过改变两个结合基序之间接头的灵活性,我们的结果表明,支架蛋白的构象波动在招募下游信号分子方面发挥了积极作用。总之,本研究展示了计算模拟在理解支架蛋白功能的一般原理方面的能力。

相似文献

1
Understand the Functions of Scaffold Proteins in Cell Signaling by a Mesoscopic Simulation Method.
Biophys J. 2020 Nov 17;119(10):2116-2126. doi: 10.1016/j.bpj.2020.10.002. Epub 2020 Oct 14.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
A multiscale model for simulating binding kinetics of proteins with flexible linkers.
Proteins. 2014 Oct;82(10):2512-22. doi: 10.1002/prot.24614. Epub 2014 Jun 9.
4
Elucidating the general principles of cell adhesion with a coarse-grained simulation model.
Mol Biosyst. 2016 Jan;12(1):205-18. doi: 10.1039/c5mb00612k. Epub 2015 Nov 19.
5
Scaffold proteins: hubs for controlling the flow of cellular information.
Science. 2011 May 6;332(6030):680-6. doi: 10.1126/science.1198701.
7
Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction.
PLoS Comput Biol. 2015 Sep 22;11(9):e1004508. doi: 10.1371/journal.pcbi.1004508. eCollection 2015.
8
Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding.
J Mol Biol. 2008 Feb 1;375(5):1416-33. doi: 10.1016/j.jmb.2007.11.063. Epub 2007 Nov 28.
9
10
Hybrid simulations of stochastic reaction-diffusion processes for modeling intracellular signaling pathways.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051910. doi: 10.1103/PhysRevE.74.051910. Epub 2006 Nov 14.

引用本文的文献

1
Intracellular protein-lipid interactions drive presynaptic assembly prior to neurexin recruitment.
Neuron. 2025 Mar 5;113(5):737-753.e6. doi: 10.1016/j.neuron.2024.12.017. Epub 2025 Jan 14.
2
Crosstalk between BER and NHEJ in XRCC4-Deficient Cells Depending on hTERT Overexpression.
Int J Mol Sci. 2024 Sep 27;25(19):10405. doi: 10.3390/ijms251910405.
3
Moonlighting Crypto-Enzymes and Domains as Ancient and Versatile Signaling Devices.
Int J Mol Sci. 2024 Sep 2;25(17):9535. doi: 10.3390/ijms25179535.
4
Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies.
Acta Pharm Sin B. 2024 Feb;14(2):533-578. doi: 10.1016/j.apsb.2023.09.003. Epub 2023 Sep 12.
5
Protein-lipid interactions drive presynaptic assembly upstream of cell adhesion molecules.
bioRxiv. 2023 Nov 17:2023.11.17.567618. doi: 10.1101/2023.11.17.567618.
6
Postsynaptic protein assembly in three and two dimensions studied by mesoscopic simulations.
Biophys J. 2023 Aug 22;122(16):3395-3410. doi: 10.1016/j.bpj.2023.07.015. Epub 2023 Jul 25.
7
Computational modeling implicates protein scaffolding in p38 regulation of Akt.
J Theor Biol. 2022 Dec 21;555:111294. doi: 10.1016/j.jtbi.2022.111294. Epub 2022 Oct 1.
8
On the formation of ordered protein assemblies in cell-cell interfaces.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2206175119. doi: 10.1073/pnas.2206175119. Epub 2022 Aug 15.

本文引用的文献

1
NERDSS: A Nonequilibrium Simulator for Multibody Self-Assembly at the Cellular Scale.
Biophys J. 2020 Jun 16;118(12):3026-3040. doi: 10.1016/j.bpj.2020.05.002. Epub 2020 May 16.
2
Multiscale simulation unravel the kinetic mechanisms of inflammasome assembly.
Biochim Biophys Acta Mol Cell Res. 2020 Feb;1867(2):118612. doi: 10.1016/j.bbamcr.2019.118612. Epub 2019 Nov 21.
3
The Interplay of Structural and Cellular Biophysics Controls Clustering of Multivalent Molecules.
Biophys J. 2019 Feb 5;116(3):560-572. doi: 10.1016/j.bpj.2019.01.001. Epub 2019 Jan 7.
5
Molecular Dynamics Simulations of Wild Type and Mutants of SAPAP in Complexed with Shank3.
Int J Mol Sci. 2019 Jan 8;20(1):224. doi: 10.3390/ijms20010224.
6
Molecular Dynamics Simulation for All.
Neuron. 2018 Sep 19;99(6):1129-1143. doi: 10.1016/j.neuron.2018.08.011.
7
Integrating Structural Information to Study the Dynamics of Protein-Protein Interactions in Cells.
Structure. 2018 Oct 2;26(10):1414-1424.e3. doi: 10.1016/j.str.2018.07.010. Epub 2018 Aug 30.
9
Single-Molecule Fluorescence Reveals the Oligomerization and Folding Steps Driving the Prion-like Behavior of ASC.
J Mol Biol. 2018 Feb 16;430(4):491-508. doi: 10.1016/j.jmb.2017.12.013. Epub 2017 Dec 27.
10
Self-Assembly of Patchy Particles.
Nano Lett. 2004 Aug;4(8):1407-1413. doi: 10.1021/nl0493500.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验