Suppr超能文献

整合结构信息研究细胞内蛋白质-蛋白质相互作用的动力学。

Integrating Structural Information to Study the Dynamics of Protein-Protein Interactions in Cells.

机构信息

Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA.

College of Engineering, University of Georgia, Athens, GA 30602, USA.

出版信息

Structure. 2018 Oct 2;26(10):1414-1424.e3. doi: 10.1016/j.str.2018.07.010. Epub 2018 Aug 30.

Abstract

The information of how two proteins interact is embedded in the atomic details of their binding interfaces. These interactions, spatial-temporally coordinating each other as a network in a variable cytoplasmic environment, dominate almost all biological functions. A feasible and reliable computational model is highly demanded to realistically simulate these cellular processes and unravel the complexities beneath them. We therefore present a multiscale framework that integrates simulations on two different scales. The higher-resolution model incorporates structural information of proteins and energetics of their binding, while the lower-resolution model uses a highly simplified representation of proteins to capture the long-time-scale dynamics of a system with multiple proteins. Through a systematic benchmark test and two practical applications of biomolecular systems with specific cellular functions, we demonstrated that this method could be a powerful approach to understand molecular mechanisms of dynamic interactions between biomolecules and their functional impacts with high computational efficiency.

摘要

两种蛋白质相互作用的信息嵌入在它们结合界面的原子细节中。这些相互作用在可变的细胞质环境中作为网络彼此时空协调,主导着几乎所有的生物功能。因此,人们迫切需要一种可行且可靠的计算模型来真实地模拟这些细胞过程,并揭示其中的复杂性。为此,我们提出了一个多尺度框架,该框架整合了两种不同尺度的模拟。高分辨率模型包含蛋白质的结构信息及其结合的能量学,而低分辨率模型则使用蛋白质的高度简化表示来捕捉具有多个蛋白质的系统的长时间尺度动力学。通过系统的基准测试和两个具有特定细胞功能的生物分子系统的实际应用,我们证明了该方法可以成为一种强大的方法,以高计算效率理解生物分子之间动态相互作用的分子机制及其功能影响。

相似文献

1
Integrating Structural Information to Study the Dynamics of Protein-Protein Interactions in Cells.
Structure. 2018 Oct 2;26(10):1414-1424.e3. doi: 10.1016/j.str.2018.07.010. Epub 2018 Aug 30.
2
A Multiscale Computational Model for Simulating the Kinetics of Protein Complex Assembly.
Methods Mol Biol. 2018;1764:401-411. doi: 10.1007/978-1-4939-7759-8_26.
3
Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations.
Acc Chem Res. 2015 Dec 15;48(12):3026-35. doi: 10.1021/acs.accounts.5b00338. Epub 2015 Nov 17.
4
Biomolecular simulation: a computational microscope for molecular biology.
Annu Rev Biophys. 2012;41:429-52. doi: 10.1146/annurev-biophys-042910-155245.
5
Understanding the Impacts of Conformational Dynamics on the Regulation of Protein-Protein Association by a Multiscale Simulation Method.
J Chem Theory Comput. 2020 Aug 11;16(8):5323-5333. doi: 10.1021/acs.jctc.0c00439. Epub 2020 Jul 29.
6
Modeling Binding Affinity of Pathological Mutations for Computational Protein Design.
Methods Mol Biol. 2017;1529:139-159. doi: 10.1007/978-1-4939-6637-0_6.
7
Multiscale Model for the Assembly Kinetics of Protein Complexes.
J Phys Chem B. 2016 Feb 4;120(4):621-32. doi: 10.1021/acs.jpcb.5b08962. Epub 2016 Jan 20.
8
Multiscale molecular dynamics of protein aggregation.
Curr Protein Pept Sci. 2011 May;12(3):221-34. doi: 10.2174/138920311795860205.
9
Prediction of protein-protein interactions: unifying evolution and structure at protein interfaces.
Phys Biol. 2011 Jun;8(3):035006. doi: 10.1088/1478-3975/8/3/035006. Epub 2011 May 13.

引用本文的文献

1
The origin of genetic and metabolic systems: Evolutionary structuralinsights.
Heliyon. 2023 Mar 11;9(3):e14466. doi: 10.1016/j.heliyon.2023.e14466. eCollection 2023 Mar.
2
How does the same ligand activate signaling of different receptors in TNFR superfamily: a computational study.
J Cell Commun Signal. 2023 Sep;17(3):657-671. doi: 10.1007/s12079-022-00701-2. Epub 2022 Sep 28.
3
Combining hypothesis- and data-driven neuroscience modeling in FAIR workflows.
Elife. 2022 Jul 6;11:e69013. doi: 10.7554/eLife.69013.
5
A multiscale study on the mechanisms of spatial organization in ligand-receptor interactions on cell surfaces.
Comput Struct Biotechnol J. 2021 Mar 23;19:1620-1634. doi: 10.1016/j.csbj.2021.03.024. eCollection 2021.
6
A computational study of co-inhibitory immune complex assembly at the interface between T cells and antigen presenting cells.
PLoS Comput Biol. 2021 Mar 8;17(3):e1008825. doi: 10.1371/journal.pcbi.1008825. eCollection 2021 Mar.
8
Understand the Functions of Scaffold Proteins in Cell Signaling by a Mesoscopic Simulation Method.
Biophys J. 2020 Nov 17;119(10):2116-2126. doi: 10.1016/j.bpj.2020.10.002. Epub 2020 Oct 14.
10
Using Coarse-Grained Simulations to Characterize the Mechanisms of Protein-Protein Association.
Biomolecules. 2020 Jul 15;10(7):1056. doi: 10.3390/biom10071056.

本文引用的文献

1
General principles of binding between cell surface receptors and multi-specific ligands: A computational study.
PLoS Comput Biol. 2017 Oct 10;13(10):e1005805. doi: 10.1371/journal.pcbi.1005805. eCollection 2017 Oct.
4
Challenges in structural approaches to cell modeling.
J Mol Biol. 2016 Jul 31;428(15):2943-64. doi: 10.1016/j.jmb.2016.05.024. Epub 2016 May 30.
5
Multiscale Model for the Assembly Kinetics of Protein Complexes.
J Phys Chem B. 2016 Feb 4;120(4):621-32. doi: 10.1021/acs.jpcb.5b08962. Epub 2016 Jan 20.
6
Structure, dynamics, assembly, and evolution of protein complexes.
Annu Rev Biochem. 2015;84:551-75. doi: 10.1146/annurev-biochem-060614-034142. Epub 2014 Dec 8.
7
Structural basis for recognition of cellular and viral ligands by NK cell receptors.
Front Immunol. 2014 Mar 26;5:123. doi: 10.3389/fimmu.2014.00123. eCollection 2014.
8
Template-based structure modeling of protein-protein interactions.
Curr Opin Struct Biol. 2014 Feb;24:10-23. doi: 10.1016/j.sbi.2013.11.005. Epub 2013 Dec 11.
10
What is the total number of protein molecules per cell volume? A call to rethink some published values.
Bioessays. 2013 Dec;35(12):1050-5. doi: 10.1002/bies.201300066. Epub 2013 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验