Suppr超能文献

粘蛋白糖信号通过传感器激酶 RetS 抑制铜绿假单胞菌毒力相关表型。

Mucin Glycans Signal through the Sensor Kinase RetS to Inhibit Virulence-Associated Traits in Pseudomonas aeruginosa.

机构信息

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

出版信息

Curr Biol. 2021 Jan 11;31(1):90-102.e7. doi: 10.1016/j.cub.2020.09.088. Epub 2020 Oct 29.

Abstract

Mucus is a densely populated ecological niche that coats all non-keratinized epithelia, and plays a critical role in protecting the human body from infections. Although traditionally viewed as a physical barrier, emerging evidence suggests that mucus can directly suppress virulence-associated traits in opportunistic pathogens including Pseudomonas aeruginosa. However, the molecular mechanisms by which mucus affords this protection are unclear. Here, we show that mucins, and particularly their associated glycans, signal through the Dismed2 domain of the sensor kinase RetS in P. aeruginosa. We find that this RetS-dependent signaling leads to the direct inhibition of the GacS-GacA two-component system, the activity of which is associated with a chronic infection state. This signaling includes downregulation of the type VI secretion system (T6SS), and prevents T6SS-dependent bacterial killing by P. aeruginosa. Overall, these results shed light on how mucus impacts P. aeruginosa behavior, and may inspire novel approaches for controlling P. aeruginosa infections.

摘要

黏液是一个高度密集的生态位,覆盖着所有非角质化上皮细胞,在保护人体免受感染方面发挥着关键作用。尽管传统上被视为物理屏障,但新出现的证据表明,黏液可以直接抑制包括铜绿假单胞菌在内的机会性病原体的毒力相关特征。然而,黏液提供这种保护的分子机制尚不清楚。在这里,我们表明黏蛋白,特别是它们相关的聚糖,通过铜绿假单胞菌中的传感器激酶 RetS 的 Dismed2 结构域发出信号。我们发现这种依赖于 RetS 的信号传导导致 GacS-GacA 双组分系统的直接抑制,该系统的活性与慢性感染状态相关。这种信号传导包括下调 VI 型分泌系统(T6SS),并阻止铜绿假单胞菌通过 T6SS 依赖性细菌杀伤。总的来说,这些结果揭示了黏液如何影响铜绿假单胞菌的行为,并可能为控制铜绿假单胞菌感染提供新的方法。

相似文献

1
Mucin Glycans Signal through the Sensor Kinase RetS to Inhibit Virulence-Associated Traits in Pseudomonas aeruginosa.
Curr Biol. 2021 Jan 11;31(1):90-102.e7. doi: 10.1016/j.cub.2020.09.088. Epub 2020 Oct 29.
3
The Two-Component System FleS/FleR Represses H1-T6SS via Cyclic di-GMP Signaling in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2022 Jan 25;88(2):e0165521. doi: 10.1128/AEM.01655-21. Epub 2021 Nov 3.
5
The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling.
Environ Microbiol. 2011 Dec;13(12):3128-38. doi: 10.1111/j.1462-2920.2011.02595.x. Epub 2011 Sep 29.
6
Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection.
Nat Microbiol. 2019 Dec;4(12):2146-2154. doi: 10.1038/s41564-019-0581-8. Epub 2019 Oct 14.
7
Helix Cracking Regulates the Critical Interaction between RetS and GacS in Pseudomonas aeruginosa.
Structure. 2019 May 7;27(5):785-793.e5. doi: 10.1016/j.str.2019.02.006. Epub 2019 Mar 14.
8
NrtR Mediated Regulation of H1-T6SS in Pseudomonas aeruginosa.
Microbiol Spectr. 2022 Feb 23;10(1):e0185821. doi: 10.1128/spectrum.01858-21.
9
RpoN-Dependent Direct Regulation of Quorum Sensing and the Type VI Secretion System in Pseudomonas aeruginosa PAO1.
J Bacteriol. 2018 Jul 25;200(16). doi: 10.1128/JB.00205-18. Print 2018 Aug 15.
10
Acquisition of T6SS Effector TseL Contributes to the Emerging of Novel Epidemic Strains of Pseudomonas aeruginosa.
Microbiol Spectr. 2023 Feb 14;11(1):e0330822. doi: 10.1128/spectrum.03308-22. Epub 2022 Dec 22.

引用本文的文献

1
increases viscoelasticity and decreases transportability of artificial mucus.
iScience. 2025 Aug 5;28(9):113265. doi: 10.1016/j.isci.2025.113265. eCollection 2025 Sep 19.
2
Multilayered safety framework for living diagnostics in the colon.
Front Syst Biol. 2023 Sep 22;3:1240040. doi: 10.3389/fsysb.2023.1240040. eCollection 2023.
4
Transcriptomic profiling reveals RetS-mediated regulation of type VI secretion system and host cell responses in infections.
Front Cell Infect Microbiol. 2025 Jun 10;15:1582339. doi: 10.3389/fcimb.2025.1582339. eCollection 2025.
5
Pathogenicity and virulence of : Recent advances and under-investigated topics.
Virulence. 2025 Dec;16(1):2503430. doi: 10.1080/21505594.2025.2503430. Epub 2025 May 14.
7
Glycan-mediated adhesion mechanisms in antibiotic-resistant bacteria.
BBA Adv. 2025 Mar 14;7:100156. doi: 10.1016/j.bbadva.2025.100156. eCollection 2025.
8
Profiling Salmonella transcriptional dynamics during macrophage infection using a comprehensive reporter library.
Nat Microbiol. 2025 Apr;10(4):1006-1023. doi: 10.1038/s41564-025-01953-5. Epub 2025 Apr 2.
9
Intestinal mucus: the unsung hero in the battle against viral gastroenteritis.
Gut Pathog. 2025 Feb 19;17(1):11. doi: 10.1186/s13099-025-00684-6.
10
Mussel-inspired cross-linking mechanisms enhance gelation and adhesion of multifunctional mucin-derived hydrogels.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2415927122. doi: 10.1073/pnas.2415927122. Epub 2025 Feb 19.

本文引用的文献

1
Host Adaptation Predisposes Pseudomonas aeruginosa to Type VI Secretion System-Mediated Predation by the Burkholderia cepacia Complex.
Cell Host Microbe. 2020 Oct 7;28(4):534-547.e3. doi: 10.1016/j.chom.2020.06.019. Epub 2020 Aug 4.
2
A Simple, Cost-Effective, and Robust Method for rRNA Depletion in RNA-Sequencing Studies.
mBio. 2020 Apr 21;11(2):e00010-20. doi: 10.1128/mBio.00010-20.
3
Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection.
Nat Microbiol. 2019 Dec;4(12):2146-2154. doi: 10.1038/s41564-019-0581-8. Epub 2019 Oct 14.
4
Helix Cracking Regulates the Critical Interaction between RetS and GacS in Pseudomonas aeruginosa.
Structure. 2019 May 7;27(5):785-793.e5. doi: 10.1016/j.str.2019.02.006. Epub 2019 Mar 14.
5
MUC1 is a receptor for the Salmonella SiiE adhesin that enables apical invasion into enterocytes.
PLoS Pathog. 2019 Feb 4;15(2):e1007566. doi: 10.1371/journal.ppat.1007566. eCollection 2019 Feb.
6
Mucins and Their Role in Shaping the Functions of Mucus Barriers.
Annu Rev Cell Dev Biol. 2018 Oct 6;34:189-215. doi: 10.1146/annurev-cellbio-100617-062818. Epub 2018 May 11.
7
Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in .
Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):10780-10785. doi: 10.1073/pnas.1806005115. Epub 2018 Oct 1.
8
Mucus-penetrating phage-displayed peptides for improved transport across a mucus-like model.
Int J Pharm. 2018 Dec 20;553(1-2):57-64. doi: 10.1016/j.ijpharm.2018.09.055. Epub 2018 Sep 27.
10
Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation.
Microbiology (Reading). 2018 May;164(5):751-763. doi: 10.1099/mic.0.000656. Epub 2018 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验