Suppr超能文献

黑箱模型的因果解释

CAUSAL INTERPRETATIONS OF BLACK-BOX MODELS.

作者信息

Zhao Qingyuan, Hastie Trevor

机构信息

Department of Statistics, University of Pennsylvania and Department of Statistics, Stanford University.

出版信息

J Bus Econ Stat. 2019;2019. doi: 10.1080/07350015.2019.1624293. Epub 2019 Jul 5.

Abstract

The fields of machine learning and causal inference have developed many concepts, tools, and theory that are potentially useful for each other. Through exploring the possibility of extracting causal interpretations from black-box machine-trained models, we briefly review the languages and concepts in causal inference that may be interesting to machine learning researchers. We start with the curious observation that Friedman's partial dependence plot has exactly the same formula as Pearl's back-door adjustment and discuss three requirements to make causal interpretations: a model with good predictive performance, some domain knowledge in the form of a causal diagram and suitable visualization tools. We provide several illustrative examples and find some interesting and potentially causal relations using visualization tools for black-box models.

摘要

机器学习和因果推断领域已经开发出了许多对彼此可能有用的概念、工具和理论。通过探索从黑箱机器学习模型中提取因果解释的可能性,我们简要回顾了因果推断中机器学习研究人员可能感兴趣的语言和概念。我们从一个有趣的观察开始,即弗里德曼的局部依赖图与珀尔的后门调整有着完全相同的公式,并讨论了进行因果解释的三个要求:具有良好预测性能的模型、以因果图形式存在的一些领域知识以及合适的可视化工具。我们提供了几个说明性示例,并使用黑箱模型的可视化工具发现了一些有趣的、潜在的因果关系。

相似文献

1
CAUSAL INTERPRETATIONS OF BLACK-BOX MODELS.
J Bus Econ Stat. 2019;2019. doi: 10.1080/07350015.2019.1624293. Epub 2019 Jul 5.
2
Techniques to improve ecological interpretability of black-box machine learning models.
J Agric Biol Environ Stat. 2021 Oct 28;27:175-197. doi: 10.1007/s13253-021-00479-7.
3
Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology.
Can J Cardiol. 2022 Feb;38(2):204-213. doi: 10.1016/j.cjca.2021.09.004. Epub 2021 Sep 14.
4
On Granger causality and the effect of interventions in time series.
Lifetime Data Anal. 2010 Jan;16(1):3-32. doi: 10.1007/s10985-009-9143-3. Epub 2009 Nov 26.
5
CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS.
Ann Stat. 2016 Dec;44(6):2433-2466. doi: 10.1214/15-AOS1411. Epub 2016 Nov 23.
6
Temporal-Spatial Causal Interpretations for Vision-Based Reinforcement Learning.
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):10222-10235. doi: 10.1109/TPAMI.2021.3133717. Epub 2022 Nov 7.
7
Theory-based causal induction.
Psychol Rev. 2009 Oct;116(4):661-716. doi: 10.1037/a0017201.
8
Learning Causal Effects From Observational Data in Healthcare: A Review and Summary.
Front Med (Lausanne). 2022 Jul 7;9:864882. doi: 10.3389/fmed.2022.864882. eCollection 2022.
9
Reflection on modern methods: when worlds collide-prediction, machine learning and causal inference.
Int J Epidemiol. 2021 Jan 23;49(6):2058-2064. doi: 10.1093/ije/dyz132.
10
Algorithms of causal inference for the analysis of effective connectivity among brain regions.
Front Neuroinform. 2014 Jul 2;8:64. doi: 10.3389/fninf.2014.00064. eCollection 2014.

引用本文的文献

1
Heat syndrome types prediction of traditional Chinese medicine in acute ischemic stroke through deep learning: a pilot study.
Front Pharmacol. 2025 Aug 4;16:1601601. doi: 10.3389/fphar.2025.1601601. eCollection 2025.
5
Data science and automation in the process of theorizing: Machine learning's power of induction in the co-duction cycle.
PLoS One. 2024 Nov 4;19(11):e0309318. doi: 10.1371/journal.pone.0309318. eCollection 2024.
6
A framework for identifying factors controlling cyanobacterium blooms by coupled CCM-ECCM Bayesian networks.
Ecol Evol. 2024 Jun 25;14(6):e11475. doi: 10.1002/ece3.11475. eCollection 2024 Jun.
8
Predicting and improving complex beer flavor through machine learning.
Nat Commun. 2024 Mar 26;15(1):2368. doi: 10.1038/s41467-024-46346-0.
9
Utilization of a Low-Cost Sensor Array for Mobile Methane Monitoring.
Sensors (Basel). 2024 Jan 14;24(2):519. doi: 10.3390/s24020519.
10
Beyond scores: A machine learning approach to comparing educational system effectiveness.
PLoS One. 2023 Oct 26;18(10):e0289260. doi: 10.1371/journal.pone.0289260. eCollection 2023.

本文引用的文献

1
Big Data in Public Health: Terminology, Machine Learning, and Privacy.
Annu Rev Public Health. 2018 Apr 1;39:95-112. doi: 10.1146/annurev-publhealth-040617-014208. Epub 2017 Dec 20.
2
Interpretation and identification of causal mediation.
Psychol Methods. 2014 Dec;19(4):459-81. doi: 10.1037/a0036434. Epub 2014 Jun 2.
3
Estimating Individualized Treatment Rules Using Outcome Weighted Learning.
J Am Stat Assoc. 2012 Sep 1;107(449):1106-1118. doi: 10.1080/01621459.2012.695674.
4
Informing sequential clinical decision-making through reinforcement learning: an empirical study.
Mach Learn. 2011 Jul 1;84(1-2):109-136. doi: 10.1007/s10994-010-5229-0.
5
Methods for national population forecasts: a review.
J Am Stat Assoc. 1986 Dec;81(396):888-901. doi: 10.1080/01621459.1986.10478347.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验