Suppr超能文献

如何着手流动化学。

How to approach flow chemistry.

机构信息

Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.

出版信息

Chem Soc Rev. 2020 Dec 21;49(24):8910-8932. doi: 10.1039/c9cs00832b. Epub 2020 Nov 3.

Abstract

Flow chemistry is a widely explored technology whose intrinsic features both facilitate and provide reproducible access to a broad range of chemical processes that are otherwise inefficient or problematic. At its core, a flow chemistry module is a stable set of conditions - traditionally thought of as an externally applied means of activation/control (e.g. heat or light) - through which reagents are passed. In an attempt to simplify the teaching and dissemination of this field, we envisioned that the key advantages of the technique, such as reproducibility and the correlation between reaction time and position within the reactor, allow for the redefinition of a flow module to a more synthetically relevant one based on the overall induced effect. We suggest a rethinking of the approach to flow modules, distributing them in two subclasses: transformers and generators, which can be described respectively as a set of conditions for either performing a specific transformation or for generating a reactive intermediate. The chemistry achieved by transformers and generators is (ideally) independent of the substrate introduced, meaning that they must be robust to small adjustments necessary for the adaptation to different starting materials and reagents while ensuring the same chemical outcome. These redefined modules can be used for single-step reactions or in multistep processes, where modules can be connected to each other in reconfigurable combinations to create chemical assembly systems (CAS) targeting compounds and libraries sharing structural cores. With this tutorial review, we provide a guide to the overall approach to flow chemistry, discussing the key parameters for the design of transformers and generators as well as the development of chemical assembly systems.

摘要

流动化学是一种广泛探索的技术,其固有特点既便于又提供了广泛的化学过程的可重复访问,否则这些过程效率低下或存在问题。从本质上讲,流动化学模块是一组稳定的条件 - 传统上被认为是外部施加的激活/控制手段(例如热或光) - 通过这些条件试剂通过。为了简化该领域的教学和传播,我们设想该技术的主要优势,如重现性和反应时间与反应器内位置之间的相关性,可以重新定义流动模块,使其更基于整体诱导效应的更具合成相关性。我们建议重新思考流动模块的方法,将它们分为两类:变压器和发生器,可以分别描述为执行特定转换或生成反应中间体的条件集。变压器和发生器所实现的化学性质(理想情况下)与引入的底物无关,这意味着它们必须对适应不同起始材料和试剂所需的小调整具有鲁棒性,同时确保相同的化学结果。这些重新定义的模块可用于单步反应或多步过程,其中模块可以以可重新配置的组合连接在一起,以创建针对化合物和共享结构核心的库的化学组装系统 (CAS)。通过本教程综述,我们提供了流动化学的总体方法指南,讨论了设计变压器和发生器以及开发化学组装系统的关键参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验