Xu Shunqi, Sun Hanjun, Addicoat Matthew, Biswal Bishnu P, He Fan, Park SangWook, Paasch Silvia, Zhang Tao, Sheng Wenbo, Brunner Eike, Hou Yang, Richter Marcus, Feng Xinliang
Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Chair of Molecular Functional Materials, Technische Universität Dresden, Mommsenstraße 4, Dresden, 01069, Germany.
School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
Adv Mater. 2021 Jan;33(1):e2006274. doi: 10.1002/adma.202006274. Epub 2020 Nov 16.
Photoelectrochemical (PEC) water reduction, converting solar energy into environmentally friendly hydrogen fuel, requires delicate design and synthesis of semiconductors with appropriate bandgaps, suitable energy levels of the frontier orbitals, and high intrinsic charge mobility. In this work, the synthesis of a novel bithiophene-bridged donor-acceptor-based 2D sp -carbon-linked conjugated polymer (2D CCP) is demonstrated. The Knoevenagel polymerization between the electron-accepting building block 2,3,8,9,14,15-hexa(4-formylphenyl) diquinoxalino[2,3-a:2',3'-c]phenazine (HATN-6CHO) and the first electron-donating linker 2,2'-([2,2'-bithiophene]-5,5'-diyl)diacetonitrile (ThDAN) provides the 2D CCP-HATNThDAN (2D CCP-Th). Compared with the corresponding biphenyl-bridged 2D CCP-HATN-BDAN (2D CCP-BD), the bithiophene-based 2D CCP-Th exhibits a wide light-harvesting range (up to 674 nm), a optical energy gap (2.04 eV), and highest energy occupied molecular orbital-lowest unoccupied molecular orbital distributions for facilitated charge transfer, which make 2D CCP-Th a promising candidate for PEC water reduction. As a result, 2D CCP-Th presents a superb H -evolution photocurrent density up to ≈7.9 µA cm at 0 V versus reversible hydrogen electrode, which is superior to the reported 2D covalent organic frameworks and most carbon nitride materials (0.09-6.0 µA cm ). Density functional theory calculations identify the thiophene units and cyano substituents at the vinylene linkage as active sites for the evolution of H .
光电化学(PEC)水还原反应将太阳能转化为环境友好型氢燃料,这需要精心设计和合成具有合适带隙、前沿轨道能级适宜且本征电荷迁移率高的半导体。在这项工作中,展示了一种新型的基于双噻吩桥连供体-受体的二维sp -碳连接共轭聚合物(2D CCP)的合成。电子受体结构单元2,3,8,9,14,15-六(4-甲酰基苯基)二喹喔啉并[2,3-a:2',3'-c]吩嗪(HATN-6CHO)与首个电子供体连接基2,2'-([2,2'-联噻吩]-5,5'-二基)二乙腈(ThDAN)之间的Knoevenagel聚合反应生成了2D CCP-HATNThDAN(2D CCP-Th)。与相应的联苯桥连2D CCP-HATN-BDAN(2D CCP-BD)相比,基于双噻吩的2D CCP-Th具有较宽的光捕获范围(高达674 nm)、光学能隙(2.04 eV)以及有利于电荷转移的最高占据分子轨道-最低未占据分子轨道分布,这使得2D CCP-Th成为PEC水还原反应的一个有前景的候选材料。结果,2D CCP-Th在相对于可逆氢电极0 V时呈现出高达约7.9 μA cm的出色析氢光电流密度,这优于已报道的二维共价有机框架和大多数氮化碳材料(0.09 - 6.0 μA cm)。密度泛函理论计算确定了亚乙烯基连接处的噻吩单元和氰基取代基是析氢的活性位点。