Suppr超能文献

靶向 STAT3 的蛋白水解靶向嵌合体和新一代反义寡核苷酸。

Targeting STAT3 with Proteolysis Targeting Chimeras and Next-Generation Antisense Oligonucleotides.

机构信息

Department of Otolaryngology - Head and Neck Surgery, University of California at San Francisco, San Francisco, California.

出版信息

Mol Cancer Ther. 2021 Feb;20(2):219-228. doi: 10.1158/1535-7163.MCT-20-0599. Epub 2020 Nov 17.

Abstract

STAT3 has been recognized for its key role in the progression of cancer, where it is frequently upregulated or constitutively hyperactivated, contributing to tumor cell proliferation, survival, and migration, as well as angiogenesis and suppression of antitumor immunity. Given the ubiquity of dysregulated STAT3 activity in cancer, it has long been considered a highly attractive target for the development of anticancer therapies. Efforts to target STAT3, however, have proven to be especially challenging, perhaps owing to the fact that transcription factors lack targetable enzymatic activity and have historically been considered "undruggable." Small-molecule inhibitors targeting STAT3 have been limited by insufficient selectivity and potency. More recently, therapeutic approaches that selectively target STAT3 protein for degradation have been developed, offering novel strategies that do not rely on inhibition of upstream pathways or direct competitive inhibition of the STAT3 protein. Here, we review these emerging approaches, including the development of STAT3 proteolysis targeting chimera agents, as well as preclinical and clinical studies of chemically stabilized antisense molecules, such as the clinical agent AZD9150. These therapeutic strategies may robustly reduce the cellular activity of oncogenic STAT3 and overcome the historical limitations of less selective small molecules.

摘要

STAT3 因其在癌症进展中的关键作用而备受关注,其通常被上调或持续过度激活,促进肿瘤细胞增殖、存活和迁移,以及血管生成和抑制抗肿瘤免疫。鉴于失调的 STAT3 活性在癌症中的普遍性,它长期以来一直被认为是开发抗癌疗法的极具吸引力的靶标。然而,靶向 STAT3 的努力被证明是特别具有挑战性的,这可能是由于转录因子缺乏可靶向的酶活性,并且在历史上被认为是“不可成药的”。针对 STAT3 的小分子抑制剂受到选择性和效力不足的限制。最近,已经开发出了选择性针对 STAT3 蛋白进行降解的治疗方法,提供了不依赖于抑制上游途径或直接竞争性抑制 STAT3 蛋白的新策略。在这里,我们综述了这些新兴的方法,包括 STAT3 蛋白水解靶向嵌合体试剂的开发,以及化学稳定的反义分子的临床前和临床研究,例如临床药物 AZD9150。这些治疗策略可能会强有力地降低致癌性 STAT3 的细胞活性,并克服以前对选择性较低的小分子的限制。

相似文献

1
Targeting STAT3 with Proteolysis Targeting Chimeras and Next-Generation Antisense Oligonucleotides.
Mol Cancer Ther. 2021 Feb;20(2):219-228. doi: 10.1158/1535-7163.MCT-20-0599. Epub 2020 Nov 17.
3
Inhibition of with the Generation 2.5 Antisense Oligonucleotide, AZD9150, Decreases Neuroblastoma Tumorigenicity and Increases Chemosensitivity.
Clin Cancer Res. 2017 Apr 1;23(7):1771-1784. doi: 10.1158/1078-0432.CCR-16-1317. Epub 2016 Oct 19.
5
Targeting STAT3 in Cancer with Nucleotide Therapeutics.
Cancers (Basel). 2019 Oct 29;11(11):1681. doi: 10.3390/cancers11111681.
7
Structure-Based Discovery of SD-36 as a Potent, Selective, and Efficacious PROTAC Degrader of STAT3 Protein.
J Med Chem. 2019 Dec 26;62(24):11280-11300. doi: 10.1021/acs.jmedchem.9b01530. Epub 2019 Dec 10.
8
Development of decoy oligonucleotide-warheaded chimeric molecules targeting STAT3.
Bioorg Med Chem. 2023 Nov 15;95:117507. doi: 10.1016/j.bmc.2023.117507. Epub 2023 Oct 21.
9
Uniquely modified RNA oligonucleotides targeting STAT3 suppress melanoma growth both in vitro and in vivo.
Cancer Biol Ther. 2009 Nov;8(21):2065-72. doi: 10.4161/cbt.8.21.9839. Epub 2009 Nov 18.
10
Small-molecule PROTAC mediates targeted protein degradation to treat STAT3-dependent epithelial cancer.
JCI Insight. 2022 Nov 22;7(22):e160606. doi: 10.1172/jci.insight.160606.

引用本文的文献

1
Using siRNA-Based Anti-Inflammatory Lipid Nanoparticles for Gene Regulation in Psoriasis.
Int J Nanomedicine. 2025 Apr 12;20:4519-4533. doi: 10.2147/IJN.S504639. eCollection 2025.
2
Regulation and therapy: the role of ferroptosis in DLBCL.
Front Pharmacol. 2025 Jan 6;15:1458412. doi: 10.3389/fphar.2024.1458412. eCollection 2024.
4
Probing the Depths of Molecular Complexity: STAT3 as a Key Architect in Colorectal Cancer Pathogenesis.
Curr Gene Ther. 2025;25(4):433-452. doi: 10.2174/0115665232336447241010094744.
5
Novel STAT3 oligonucleotide compounds suppress tumor growth and overcome the acquired resistance to sorafenib in hepatocellular carcinoma.
Acta Pharmacol Sin. 2024 Aug;45(8):1701-1714. doi: 10.1038/s41401-024-01261-4. Epub 2024 Apr 12.
6
Cancer stem cells: a target for overcoming therapeutic resistance and relapse.
Cancer Biol Med. 2023 Dec 29;20(12):985-1020. doi: 10.20892/j.issn.2095-3941.2023.0333.
7
Targeted Protein Degradation: Advances, Challenges, and Prospects for Computational Methods.
J Chem Inf Model. 2023 Sep 11;63(17):5408-5432. doi: 10.1021/acs.jcim.3c00603. Epub 2023 Aug 21.
8
Non-canonical role for the ataxia-telangiectasia-Rad3 pathway in STAT3 activation in human multiple myeloma cells.
Cell Oncol (Dordr). 2023 Oct;46(5):1369-1380. doi: 10.1007/s13402-023-00817-6. Epub 2023 May 1.
10
Digesting the Role of JAK-STAT and Cytokine Signaling in Oral and Gastric Cancers.
Front Immunol. 2022 Jun 29;13:835997. doi: 10.3389/fimmu.2022.835997. eCollection 2022.

本文引用的文献

1
Small molecule PROTACs: an emerging technology for targeted therapy in drug discovery.
RSC Adv. 2019 May 30;9(30):16967-16976. doi: 10.1039/c9ra03423d. eCollection 2019 May 29.
2
Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy.
J Hematol Oncol. 2020 May 13;13(1):50. doi: 10.1186/s13045-020-00885-3.
3
The powerful world of antisense oligonucleotides: From bench to bedside.
Wiley Interdiscip Rev RNA. 2020 Sep;11(5):e1594. doi: 10.1002/wrna.1594. Epub 2020 Mar 31.
4
Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2.
Commun Biol. 2020 Mar 20;3(1):140. doi: 10.1038/s42003-020-0868-6.
5
Targeted Protein Degradation by Chimeric Small Molecules, PROTACs and SNIPERs.
Front Chem. 2019 Dec 10;7:849. doi: 10.3389/fchem.2019.00849. eCollection 2019.
6
PROTACs: great opportunities for academia and industry.
Signal Transduct Target Ther. 2019 Dec 24;4:64. doi: 10.1038/s41392-019-0101-6. eCollection 2019.
7
Structure-Based Discovery of SD-36 as a Potent, Selective, and Efficacious PROTAC Degrader of STAT3 Protein.
J Med Chem. 2019 Dec 26;62(24):11280-11300. doi: 10.1021/acs.jmedchem.9b01530. Epub 2019 Dec 10.
8
A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo.
Cancer Cell. 2019 Nov 11;36(5):498-511.e17. doi: 10.1016/j.ccell.2019.10.002.
9
Development of targeted protein degradation therapeutics.
Nat Chem Biol. 2019 Oct;15(10):937-944. doi: 10.1038/s41589-019-0362-y. Epub 2019 Sep 16.
10
Targeting STAT3 inhibition to reverse cisplatin resistance.
Biomed Pharmacother. 2019 Sep;117:109135. doi: 10.1016/j.biopha.2019.109135. Epub 2019 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验