Department of Medicine (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI.
Cardiovascular Center (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI.
Arterioscler Thromb Vasc Biol. 2021 Jan;41(1):446-457. doi: 10.1161/ATVBAHA.120.314944. Epub 2020 Nov 24.
Coronary artery disease (CAD) is associated with a compensatory switch in mechanism of flow-mediated dilation (FMD) from nitric oxide (NO) to HO. The underlying mechanism responsible for the pathological shift is not well understood, and recent reports directly implicate telomerase and indirectly support a role for autophagy. We hypothesize that autophagy is critical for shear stress-induced release of NO and is a crucial component of for the pathway by which telomerase regulates FMD. Approach and Results: Human left ventricular, atrial, and adipose resistance arterioles were collected for videomicroscopy and immunoblotting. FMD and autophagic flux were measured in arterioles treated with autophagy modulators alone, and in tandem with telomerase-activity modulators. LC3B II/I was higher in left ventricular tissue from patients with CAD compared with non-CAD (2.8±0.2 versus 1.0±0.2-fold change; <0.05), although p62 was similar between groups. Shear stress increased Lysotracker fluorescence in non-CAD arterioles, with no effect in CAD arterioles. Inhibition of autophagy in non-CAD arterioles induced a switch from NO to HO, while activation of autophagy restored NO-mediated vasodilation in CAD arterioles. In the presence of an autophagy activator, telomerase inhibitor prevented the expected switch (Control: 82±4%; NG-Nitro-l-arginine methyl ester: 36±5%; polyethylene glycol catalase: 80±3). Telomerase activation was unable to restore NO-mediated FMD in the presence of autophagy inhibition in CAD arterioles (control: 72±7%; NG-Nitro-l-arginine methyl ester: 79±7%; polyethylene glycol catalase: 38±9%).
We provide novel evidence that autophagy is responsible for the pathological switch in dilator mechanism in CAD arterioles, demonstrating that autophagy acts downstream of telomerase as a common denominator in determining the mechanism of FMD.
冠心病(CAD)与血流介导的扩张(FMD)中一氧化氮(NO)向 HO 转变的机制补偿性转换有关。导致这种病理转变的潜在机制尚不清楚,最近的报告直接涉及端粒酶,并间接支持自噬的作用。我们假设自噬对于剪切力诱导的 NO 释放至关重要,并且是端粒酶调节 FMD 途径的关键组成部分。方法和结果:采集人左心室、心房和脂肪阻力小动脉进行视频显微镜检查和免疫印迹。单独用自噬调节剂处理小动脉,以及与端粒酶活性调节剂一起处理,测量 FMD 和自噬通量。与非 CAD 患者相比,CAD 患者的左心室组织中的 LC3B II/I 更高(2.8±0.2 倍与 1.0±0.2 倍变化;<0.05),而 p62 在两组之间相似。非 CAD 小动脉中的剪切力增加了 Lysotracker 荧光,而 CAD 小动脉则没有影响。非 CAD 小动脉中的自噬抑制诱导了从 NO 到 HO 的转变,而 CAD 小动脉中的自噬激活恢复了 NO 介导的血管舒张。在自噬激活剂存在的情况下,端粒酶抑制剂阻止了预期的转变(对照:82±4%;NG-硝基-l-精氨酸甲酯:36±5%;聚乙二醇过氧化氢酶:80±3%)。在 CAD 小动脉中自噬抑制的情况下,端粒酶激活无法恢复 NO 介导的 FMD(对照:72±7%;NG-硝基-l-精氨酸甲酯:79±7%;聚乙二醇过氧化氢酶:38±9%)。结论:我们提供了新的证据表明,自噬是 CAD 小动脉扩张机制中病理转变的原因,证明自噬作为端粒酶的下游作用,是决定 FMD 机制的共同因素。