Suppr超能文献

端粒酶与自噬在介导血流诱导的人小动脉血管舒张中的关键相互作用。

Critical Interaction Between Telomerase and Autophagy in Mediating Flow-Induced Human Arteriolar Vasodilation.

机构信息

Department of Medicine (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI.

Cardiovascular Center (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI.

出版信息

Arterioscler Thromb Vasc Biol. 2021 Jan;41(1):446-457. doi: 10.1161/ATVBAHA.120.314944. Epub 2020 Nov 24.

Abstract

OBJECTIVE

Coronary artery disease (CAD) is associated with a compensatory switch in mechanism of flow-mediated dilation (FMD) from nitric oxide (NO) to HO. The underlying mechanism responsible for the pathological shift is not well understood, and recent reports directly implicate telomerase and indirectly support a role for autophagy. We hypothesize that autophagy is critical for shear stress-induced release of NO and is a crucial component of for the pathway by which telomerase regulates FMD. Approach and Results: Human left ventricular, atrial, and adipose resistance arterioles were collected for videomicroscopy and immunoblotting. FMD and autophagic flux were measured in arterioles treated with autophagy modulators alone, and in tandem with telomerase-activity modulators. LC3B II/I was higher in left ventricular tissue from patients with CAD compared with non-CAD (2.8±0.2 versus 1.0±0.2-fold change; <0.05), although p62 was similar between groups. Shear stress increased Lysotracker fluorescence in non-CAD arterioles, with no effect in CAD arterioles. Inhibition of autophagy in non-CAD arterioles induced a switch from NO to HO, while activation of autophagy restored NO-mediated vasodilation in CAD arterioles. In the presence of an autophagy activator, telomerase inhibitor prevented the expected switch (Control: 82±4%; NG-Nitro-l-arginine methyl ester: 36±5%; polyethylene glycol catalase: 80±3). Telomerase activation was unable to restore NO-mediated FMD in the presence of autophagy inhibition in CAD arterioles (control: 72±7%; NG-Nitro-l-arginine methyl ester: 79±7%; polyethylene glycol catalase: 38±9%).

CONCLUSIONS

We provide novel evidence that autophagy is responsible for the pathological switch in dilator mechanism in CAD arterioles, demonstrating that autophagy acts downstream of telomerase as a common denominator in determining the mechanism of FMD.

摘要

目的

冠心病(CAD)与血流介导的扩张(FMD)中一氧化氮(NO)向 HO 转变的机制补偿性转换有关。导致这种病理转变的潜在机制尚不清楚,最近的报告直接涉及端粒酶,并间接支持自噬的作用。我们假设自噬对于剪切力诱导的 NO 释放至关重要,并且是端粒酶调节 FMD 途径的关键组成部分。方法和结果:采集人左心室、心房和脂肪阻力小动脉进行视频显微镜检查和免疫印迹。单独用自噬调节剂处理小动脉,以及与端粒酶活性调节剂一起处理,测量 FMD 和自噬通量。与非 CAD 患者相比,CAD 患者的左心室组织中的 LC3B II/I 更高(2.8±0.2 倍与 1.0±0.2 倍变化;<0.05),而 p62 在两组之间相似。非 CAD 小动脉中的剪切力增加了 Lysotracker 荧光,而 CAD 小动脉则没有影响。非 CAD 小动脉中的自噬抑制诱导了从 NO 到 HO 的转变,而 CAD 小动脉中的自噬激活恢复了 NO 介导的血管舒张。在自噬激活剂存在的情况下,端粒酶抑制剂阻止了预期的转变(对照:82±4%;NG-硝基-l-精氨酸甲酯:36±5%;聚乙二醇过氧化氢酶:80±3%)。在 CAD 小动脉中自噬抑制的情况下,端粒酶激活无法恢复 NO 介导的 FMD(对照:72±7%;NG-硝基-l-精氨酸甲酯:79±7%;聚乙二醇过氧化氢酶:38±9%)。结论:我们提供了新的证据表明,自噬是 CAD 小动脉扩张机制中病理转变的原因,证明自噬作为端粒酶的下游作用,是决定 FMD 机制的共同因素。

相似文献

1
Critical Interaction Between Telomerase and Autophagy in Mediating Flow-Induced Human Arteriolar Vasodilation.
Arterioscler Thromb Vasc Biol. 2021 Jan;41(1):446-457. doi: 10.1161/ATVBAHA.120.314944. Epub 2020 Nov 24.
2
Vascular Actions of Angiotensin 1-7 in the Human Microcirculation: Novel Role for Telomerase.
Arterioscler Thromb Vasc Biol. 2016 Jun;36(6):1254-62. doi: 10.1161/ATVBAHA.116.307518. Epub 2016 Apr 14.
3
Critical Role for Telomerase in the Mechanism of Flow-Mediated Dilation in the Human Microcirculation.
Circ Res. 2016 Mar 4;118(5):856-66. doi: 10.1161/CIRCRESAHA.115.307918. Epub 2015 Dec 23.
4
Ceramide changes the mediator of flow-induced vasodilation from nitric oxide to hydrogen peroxide in the human microcirculation.
Circ Res. 2014 Aug 15;115(5):525-32. doi: 10.1161/CIRCRESAHA.115.303881. Epub 2014 Jun 11.
6
The mechanism of flow-induced dilation in human adipose arterioles involves hydrogen peroxide during CAD.
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H93-100. doi: 10.1152/ajpheart.00819.2006. Epub 2006 Oct 13.
7
Contribution of K1.5 Channel to Hydrogen Peroxide-Induced Human Arteriolar Dilation and Its Modulation by Coronary Artery Disease.
Circ Res. 2017 Feb 17;120(4):658-669. doi: 10.1161/CIRCRESAHA.116.309491. Epub 2016 Nov 21.
9
Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease.
Basic Res Cardiol. 2017 Jan;112(1):5. doi: 10.1007/s00395-016-0594-x. Epub 2016 Dec 19.
10
An acute rise in intraluminal pressure shifts the mediator of flow-mediated dilation from nitric oxide to hydrogen peroxide in human arterioles.
Am J Physiol Heart Circ Physiol. 2014 Dec 1;307(11):H1587-93. doi: 10.1152/ajpheart.00557.2014. Epub 2014 Sep 26.

引用本文的文献

1
Immunophenotyping identifies key immune biomarkers for coronary artery disease through machine learning.
PLoS One. 2025 Aug 26;20(8):e0328811. doi: 10.1371/journal.pone.0328811. eCollection 2025.
2
Endothelial TERT drives microvascular phenotype associated with coronary artery disease.
Am J Physiol Heart Circ Physiol. 2025 Jul 1;329(1):H267-H270. doi: 10.1152/ajpheart.00342.2025. Epub 2025 Jun 13.
3
Recent Insights Concerning Autophagy and Endothelial Cell Nitric Oxide Generation.
Curr Opin Physiol. 2022 Dec;30. doi: 10.1016/j.cophys.2022.100614. Epub 2022 Nov 4.
4
Inhibition of the E3 ligase UBR5 stabilizes TERT and protects vascular organoids from oxidative stress.
J Transl Med. 2024 Nov 28;22(1):1080. doi: 10.1186/s12967-024-05887-0.
5
Is the peripheral microcirculation a window into the human coronary microvasculature?
J Mol Cell Cardiol. 2024 Aug;193:67-77. doi: 10.1016/j.yjmcc.2024.06.002. Epub 2024 Jun 5.
6
Cardiovascular aging: spotlight on mitochondria.
Am J Physiol Heart Circ Physiol. 2024 Feb 1;326(2):H317-H333. doi: 10.1152/ajpheart.00632.2023. Epub 2023 Dec 1.
7
Noncanonical Role of Telomerase in Regulation of Microvascular Redox Environment With Implications for Coronary Artery Disease.
Function (Oxf). 2022 Sep 3;3(5):zqac043. doi: 10.1093/function/zqac043. eCollection 2022.
9
Activating P2Y1 receptors improves function in arteries with repressed autophagy.
Cardiovasc Res. 2023 Mar 17;119(1):252-267. doi: 10.1093/cvr/cvac061.
10
PGC1α Regulates the Endothelial Response to Fluid Shear Stress via Telomerase Reverse Transcriptase Control of Heme Oxygenase-1.
Arterioscler Thromb Vasc Biol. 2022 Jan;42(1):19-34. doi: 10.1161/ATVBAHA.121.317066. Epub 2021 Nov 18.

本文引用的文献

1
Telomerase Deficiency Predisposes to Heart Failure and Ischemia-Reperfusion Injury.
Front Cardiovasc Med. 2019 Apr 2;6:31. doi: 10.3389/fcvm.2019.00031. eCollection 2019.
2
Elevated arterial shear rate increases indexes of endothelial cell autophagy and nitric oxide synthase activation in humans.
Am J Physiol Heart Circ Physiol. 2019 Jan 1;316(1):H106-H112. doi: 10.1152/ajpheart.00561.2018. Epub 2018 Nov 9.
3
Lysophosphatidic acid acts on LPA receptor to increase H O during flow-induced dilation in human adipose arterioles.
Br J Pharmacol. 2018 Nov;175(22):4266-4280. doi: 10.1111/bph.14492. Epub 2018 Oct 11.
4
Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation.
Biochim Biophys Acta Mol Cell Res. 2018 May;1865(5):709-720. doi: 10.1016/j.bbamcr.2018.02.005. Epub 2018 Feb 18.
5
Telomerase reverse transcriptase protects against angiotensin II-induced microvascular endothelial dysfunction.
Am J Physiol Heart Circ Physiol. 2018 May 1;314(5):H1053-H1060. doi: 10.1152/ajpheart.00472.2017. Epub 2017 Dec 22.
6
The Role of Autophagy in the Heart.
Annu Rev Physiol. 2018 Feb 10;80:1-26. doi: 10.1146/annurev-physiol-021317-121427. Epub 2017 Oct 25.
7
Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow.
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8675-E8684. doi: 10.1073/pnas.1702223114. Epub 2017 Sep 25.
10
Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease.
Basic Res Cardiol. 2017 Jan;112(1):5. doi: 10.1007/s00395-016-0594-x. Epub 2016 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验