Suppr超能文献

中脑边缘束轴突中的多巴胺转运体定位表明其长程转运主要通过膜扩散进行,而逆行转运阳性隔室内的囊泡运输贡献有限。

Dopamine Transporter Localization in Medial Forebrain Bundle Axons Indicates Its Long-Range Transport Primarily by Membrane Diffusion with a Limited Contribution of Vesicular Traffic on Retromer-Positive Compartments.

机构信息

Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261.

Chatham University, Pittsburgh, Pennsylvania 15232.

出版信息

J Neurosci. 2021 Jan 13;41(2):234-250. doi: 10.1523/JNEUROSCI.0744-20.2020. Epub 2020 Nov 24.

Abstract

Dopamine transporter (DAT) controls dopamine neurotransmission by clearing synaptically released dopamine. However, trafficking itineraries of DAT, which determine its cell-surface concentration near synapses, are poorly characterized. It is especially unknown how DAT is transported between spatially distant midbrain somatodendritic and striatal axonal compartments. To examine this "long-range" trafficking, the localization and membrane diffusion of HA-epitope tagged DAT in the medial forebrain bundle (MFB) of a knock-in mouse (both sexes) were analyzed using confocal, super-resolution and EM in intact brain and acute brain slices. HA-DAT was abundant in the plasma membrane of MFB axons, similar to the striatum, although the intracellular fraction of HA-DAT in MFB was more substantial. Intracellular HA-DAT colocalized with VPS35, a subunit of the retromer complex mediating recycling from endosomes, in a subset of axons. Late endosomes, lysosomes, and endoplasmic reticulum were abundant in the soma but minimally present in MFB axons, suggesting that biosynthesis and lysosomal degradation of DAT are confined to soma. Together, the data suggest that membrane diffusion is the main mode of long-range DAT transport through MFB, although the contribution of vesicular traffic can be significant in a population of MFB axons. Based on HA-DAT diffusion rates, plasma membrane DAT in MFB axons turns over with a halftime of ∼20 d, which explains the extremely slow turnover of DAT protein in the brain. Unexpectedly, the mean diameter of DAT-labeled MFB axons was observed to be twice larger than reported for striatum. The implications of this finding for dopamine neuron physiology are discussed. The dopamine transporter (DAT) is a key regulator of dopamine neurotransmission and a target of abused psychostimulants. In the present study, we examined, for the first time, mechanisms of the long-range traffic of DAT in intact brain and acute brain slices from the knock-in mouse expressing epitope-tagged DAT. Using a combination of confocal, super-resolution and EM, we defined DAT localization and its membrane diffusion parameters in medial forebrain bundle axonal tracts connecting midbrain somatodendritic and striatal axonal compartments of dopaminergic neurons. In contrast to the widely accepted model of long-range axonal transport, our studies suggest that DAT traffics between midbrain and striatum, mainly by lateral diffusion in the plasma membrane with only a limited contribution of vesicular transport in recycling endosomes.

摘要

多巴胺转运体(DAT)通过清除突触释放的多巴胺来控制多巴胺神经传递。然而,决定多巴胺转运体在突触附近细胞表面浓度的运输途径还知之甚少。特别是不知道多巴胺转运体如何在空间上相隔较远的中脑树突状和纹状体轴突隔室之间进行运输。为了研究这种“长程”运输,在完整大脑和急性脑片中,使用共焦、超分辨率和 EM 分析了 knock-in 小鼠(雌雄同体)内侧前额束(MFB)中 HA-表位标记的 DAT 的定位和膜扩散。HA-DAT 在 MFB 轴突的质膜中丰富,类似于纹状体,尽管 MFB 中 HA-DAT 的细胞内部分更多。细胞内 HA-DAT 与 VPS35 共定位,VPS35 是一种介导从内体再循环的逆行体复合物的亚基,在轴突的一部分中。晚期内体、溶酶体和内质网在体中丰富,但在 MFB 轴突中很少存在,这表明 DAT 的生物合成和溶酶体降解仅限于体。总的来说,数据表明膜扩散是通过 MFB 进行长程 DAT 运输的主要模式,尽管在 MFB 轴突的一部分中,囊泡运输的贡献可能很大。基于 HA-DAT 的扩散率,MFB 轴突中的质膜 DAT 的半衰期约为 20 天,这解释了大脑中 DAT 蛋白的极其缓慢的周转率。出乎意料的是,观察到标记有 DAT 的 MFB 轴突的平均直径是报道的纹状体的两倍大。这一发现对多巴胺神经元生理学的影响进行了讨论。多巴胺转运体(DAT)是多巴胺神经传递的关键调节剂,也是滥用精神兴奋剂的靶点。在本研究中,我们首次在表达表位标记的 DAT 的 knock-in 小鼠的完整大脑和急性脑片中研究了 DAT 的长程运输机制。使用共焦、超分辨率和 EM 的组合,我们定义了 DAT 在连接中脑树突状和纹状体多巴胺能神经元轴突隔室的内侧前额束轴突束中的定位及其膜扩散参数。与广泛接受的长程轴突运输模型相反,我们的研究表明,DAT 在中脑和纹状体之间运输,主要通过质膜中的侧向扩散,只有回收内体中的囊泡运输有有限的贡献。

相似文献

2
Brain Region-Specific Trafficking of the Dopamine Transporter.
J Neurosci. 2015 Sep 16;35(37):12845-58. doi: 10.1523/JNEUROSCI.1391-15.2015.
3
4
Differential subcellular distribution of endosomal compartments and the dopamine transporter in dopaminergic neurons.
Mol Cell Neurosci. 2011 Jan;46(1):148-58. doi: 10.1016/j.mcn.2010.08.016. Epub 2010 Sep 15.
6
Amphetamine Induces Sex-Dependent Loss of the Striatal Dopamine Transporter in Sensitized Mice.
eNeuro. 2024 Jan 29;11(1). doi: 10.1523/ENEURO.0491-23.2023. Print 2024 Jan.
7
Postendocytic sorting of constitutively internalized dopamine transporter in cell lines and dopaminergic neurons.
J Biol Chem. 2010 Aug 27;285(35):27289-27301. doi: 10.1074/jbc.M110.131003. Epub 2010 Jun 15.
8
9
Visualization of dopamine transporter trafficking in live neurons by use of fluorescent cocaine analogs.
J Neurosci. 2009 May 27;29(21):6794-808. doi: 10.1523/JNEUROSCI.4177-08.2009.

引用本文的文献

1
Coding principles of dopaminergic transmission modes.
Sci Adv. 2025 May 30;11(22):eadx6367. doi: 10.1126/sciadv.adx6367. Epub 2025 May 28.
5
Amphetamine Induces Sex-Dependent Loss of the Striatal Dopamine Transporter in Sensitized Mice.
eNeuro. 2024 Jan 29;11(1). doi: 10.1523/ENEURO.0491-23.2023. Print 2024 Jan.
7
Dopamine transporter membrane mobility is bidirectionally regulated by phosphorylation and palmitoylation.
Curr Res Physiol. 2023 Sep 29;6:100106. doi: 10.1016/j.crphys.2023.100106. eCollection 2023.
9
Cocaine-regulated trafficking of dopamine transporters in cultured neurons revealed by a pH sensitive reporter.
iScience. 2022 Dec 9;26(1):105782. doi: 10.1016/j.isci.2022.105782. eCollection 2023 Jan 20.
10
Regulation of neuronal autophagy and the implications in neurodegenerative diseases.
Neurobiol Dis. 2022 Jan;162:105582. doi: 10.1016/j.nbd.2021.105582. Epub 2021 Dec 7.

本文引用的文献

2
The evolution of the axonal transport toolkit.
Traffic. 2020 Jan;21(1):13-33. doi: 10.1111/tra.12710. Epub 2019 Nov 28.
3
Contributions of VPS35 Mutations to Parkinson's Disease.
Neuroscience. 2019 Mar 1;401:1-10. doi: 10.1016/j.neuroscience.2019.01.006. Epub 2019 Jan 18.
4
Altered dopamine release and monoamine transporters in Vps35 p.D620N knock-in mice.
NPJ Parkinsons Dis. 2018 Aug 21;4:27. doi: 10.1038/s41531-018-0063-3. eCollection 2018.
5
Axon initial segments: structure, function, and disease.
Ann N Y Acad Sci. 2018 May;1420(1):46-61. doi: 10.1111/nyas.13718. Epub 2018 May 11.
6
Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons.
J Cell Biol. 2018 Sep 3;217(9):3127-3139. doi: 10.1083/jcb.201711083. Epub 2018 Apr 25.
8
The Axon Initial Segment: An Updated Viewpoint.
J Neurosci. 2018 Feb 28;38(9):2135-2145. doi: 10.1523/JNEUROSCI.1922-17.2018. Epub 2018 Jan 29.
9
The axonal endoplasmic reticulum: One organelle-many functions in development, maintenance, and plasticity.
Dev Neurobiol. 2018 Mar;78(3):181-208. doi: 10.1002/dneu.22560. Epub 2017 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验