Suppr超能文献

角膜中存在和不存在基质纤维化的 TGFβ1 和 TGFβ2 蛋白:伴有基质纤维化的角膜中,上皮顶端生长因子屏障和上皮基底膜的再生延迟。

TGFβ1 and TGFβ2 proteins in corneas with and without stromal fibrosis: Delayed regeneration of apical epithelial growth factor barrier and the epithelial basement membrane in corneas with stromal fibrosis.

机构信息

The Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, USA.

Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.

出版信息

Exp Eye Res. 2021 Jan;202:108325. doi: 10.1016/j.exer.2020.108325. Epub 2020 Oct 22.

Abstract

The purpose of this study was to investigate the expression and localization of transforming growth factor (TGF) β1 and TGFβ2 in rabbit corneas that healed with and without stromal fibrosis, and to further study defective perlecan incorporation in the epithelial basement membrane (EBM) in corneas with scarring fibrosis. A total of 120 female rabbits had no surgery, -4.5D PRK, or -9D PRK. Immunohistochemistry (IHC) was performed at time points from unwounded to eight weeks after surgery, with four corneas at each time point in each group. Multiplex IHC was performed for TGFβ1 or TGFβ2, with Image-J quantitation, and keratocan, vimentin, alpha-smooth muscle actin (SMA), perlecan, laminin-alpha 5, nidogen-1 or CD11b. Corneas at the four-week peak for myofibroblast and fibrosis development were evaluated using Imaris 3D analysis. Delayed regeneration of both an apical epithelial growth factor barrier and EBM barrier function, including defective EBM perlecan incorporation, was greater in high injury -9D PRK corneas compared to -4.5D PRK corneas without fibrosis. Defective apical epithelial growth factor barrier and EBM allowed epithelial and tear TGFβ1 and tear TGFβ2 to enter the corneal stroma to drive myofibroblast generation in the anterior stroma from vimentin-positive corneal fibroblasts, and likely fibrocytes. Vimentin-positive cells and unidentified vimentin-negative, CD11b-negative cells also produce TGFβ1 and/or TGFβ2 in the stroma in some corneas. TGFβ1 and TGFβ2 were at higher levels in the anterior stroma in the weeks preceding myofibroblast development in the -9D group. All -9D corneas (beginning two to three weeks after surgery), and four -4.5D PRK corneas developed significant SMA + myofibroblasts and stromal fibrosis. Both the apical epithelial growth factor barrier and/or EBM barrier functions tended to regenerate weeks earlier in -4.5D PRK corneas without fibrosis, compared to -4.5D or -9D PRK corneas with fibrosis. SMA-positive myofibroblasts were markedly reduced in most corneas by eight weeks after surgery. The apical epithelial growth factor barrier and EBM barrier limit TGFβ1 and TGFβ2 entry into the corneal stroma to modulate corneal fibroblast and myofibroblast development associated with scarring stromal fibrosis. Delayed regeneration of these barriers in corneas with more severe injuries promotes myofibroblast development, prolongs myofibroblast viability and triggers stromal scarring fibrosis.

摘要

本研究旨在探讨转化生长因子(TGF)β1 和 TGFβ2 在兔角膜愈合过程中的表达和定位,特别是在有和没有基质纤维化的情况下,并进一步研究瘢痕纤维化角膜中上皮基底膜(EBM)中缺陷性perlecan 整合。总共 120 只雌性兔子未接受手术、-4.5D PRK 或-9D PRK。在手术后未受伤至 8 周的时间点进行免疫组织化学(IHC),每组每个时间点有 4 只角膜。进行 TGFβ1 或 TGFβ2 的多重 IHC,使用 Image-J 定量,并进行角膜蛋白聚糖、波形蛋白、α-平滑肌肌动蛋白(SMA)、perlecan、层粘连蛋白-α5、巢蛋白-1 或 CD11b 的免疫组化。使用 Imaris 3D 分析评估在 4 周时肌成纤维细胞和纤维化发展的高峰时的角膜。与无纤维化的-4.5D PRK 角膜相比,高损伤-9D PRK 角膜中上皮生长因子屏障和 EBM 屏障功能的延迟再生,包括 EBM perlecan 整合的缺陷,更大。上皮生长因子屏障和 EBM 的延迟再生,包括 EBM perlecan 整合的缺陷,导致上皮和泪液 TGFβ1 和泪液 TGFβ2 进入角膜基质,在前基质中从波形蛋白阳性角膜成纤维细胞和可能的纤维细胞中驱动肌成纤维细胞的产生。在前基质中,在-9D 组的肌成纤维细胞发展之前的几周内,一些角膜中的 vimentin 阳性细胞和未识别的 vimentin 阴性、CD11b 阴性细胞也产生 TGFβ1 和/或 TGFβ2。在前基质中 TGFβ1 和 TGFβ2 的水平在肌成纤维细胞发展前的几周内更高。所有-9D 角膜(术后 2 至 3 周开始)和 4 只-4.5D PRK 角膜均出现显著的 SMA+肌成纤维细胞和基质纤维化。与无纤维化的-4.5D PRK 角膜相比,-4.5D 或-9D PRK 角膜的纤维化,上皮生长因子屏障和/或 EBM 屏障功能的再生往往更早,在无纤维化的-4.5D PRK 角膜中,在前基质中 SMA 阳性的肌成纤维细胞在术后 8 周时在大多数角膜中明显减少。上皮生长因子屏障和 EBM 屏障限制 TGFβ1 和 TGFβ2 进入角膜基质,以调节与瘢痕基质纤维化相关的角膜成纤维细胞和肌成纤维细胞的发育。在损伤更严重的角膜中,这些屏障的延迟再生促进了肌成纤维细胞的发展,延长了肌成纤维细胞的存活,并引发了基质瘢痕纤维化。

相似文献

4
The corneal fibrosis response to epithelial-stromal injury.
Exp Eye Res. 2016 Jan;142:110-8. doi: 10.1016/j.exer.2014.09.012.
5
Epithelial basement membrane injury and regeneration modulates corneal fibrosis after pseudomonas corneal ulcers in rabbits.
Exp Eye Res. 2017 Aug;161:101-105. doi: 10.1016/j.exer.2017.05.003. Epub 2017 May 13.
6
Descemet's membrane injury and regeneration, and posterior corneal fibrosis, in rabbits.
Exp Eye Res. 2021 Dec;213:108803. doi: 10.1016/j.exer.2021.108803. Epub 2021 Nov 2.
8
Stromal haze, myofibroblasts, and surface irregularity after PRK.
Exp Eye Res. 2006 May;82(5):788-97. doi: 10.1016/j.exer.2005.09.021. Epub 2005 Nov 21.
9
Transmission electron microscopy analysis of epithelial basement membrane repair in rabbit corneas with haze.
Invest Ophthalmol Vis Sci. 2013 Jun 10;54(6):4026-33. doi: 10.1167/iovs.13-12106.

引用本文的文献

5
Drug delivery strategies to improve the treatment of corneal disorders.
Heliyon. 2025 Jan 10;11(2):e41881. doi: 10.1016/j.heliyon.2025.e41881. eCollection 2025 Jan 30.
6
Effect of Topical Losartan in the Treatment of Established Corneal Fibrosis in Rabbits.
Transl Vis Sci Technol. 2024 Aug 1;13(8):22. doi: 10.1167/tvst.13.8.22.
7
TGF-β-Based Therapies for Treating Ocular Surface Disorders.
Cells. 2024 Jun 26;13(13):1105. doi: 10.3390/cells13131105.
8
Topical Losartan Inhibition of Myofibroblast Generation in Rabbit Corneas With Acute Incisions.
Cornea. 2024 Jul 1;43(7):883-889. doi: 10.1097/ICO.0000000000003476. Epub 2024 Jan 26.

本文引用的文献

1
Fibrocytes, Wound Healing, and Corneal Fibrosis.
Invest Ophthalmol Vis Sci. 2020 Feb 7;61(2):28. doi: 10.1167/iovs.61.2.28.
2
The many functions of ESCRTs.
Nat Rev Mol Cell Biol. 2020 Jan;21(1):25-42. doi: 10.1038/s41580-019-0177-4. Epub 2019 Nov 8.
3
Thrombospondin-1 in ocular surface health and disease.
Ocul Surf. 2019 Jul;17(3):374-383. doi: 10.1016/j.jtos.2019.06.001. Epub 2019 Jun 5.
4
Extracellular Vesicles and Cell-Cell Communication in the Cornea.
Anat Rec (Hoboken). 2020 Jun;303(6):1727-1734. doi: 10.1002/ar.24181. Epub 2019 Jun 10.
5
Descemet's Membrane Modulation of Posterior Corneal Fibrosis.
Invest Ophthalmol Vis Sci. 2019 Mar 1;60(4):1010-1020. doi: 10.1167/iovs.18-26451.
6
The Impact of Photorefractive Keratectomy and Mitomycin C on Corneal Nerves and Their Regeneration.
J Refract Surg. 2018 Dec 1;34(12):790-798. doi: 10.3928/1081597X-20181112-01.
8
Fibrocyte migration, differentiation and apoptosis during the corneal wound healing response to injury.
Exp Eye Res. 2018 May;170:177-187. doi: 10.1016/j.exer.2018.02.018. Epub 2018 Feb 24.
9
Pathophysiology of Corneal Scarring in Persistent Epithelial Defects After PRK and Other Corneal Injuries.
J Refract Surg. 2018 Jan 1;34(1):59-64. doi: 10.3928/1081597X-20171128-01.
10
Functional role for stable microtubules in lens fiber cell elongation.
Exp Cell Res. 2018 Jan 15;362(2):477-488. doi: 10.1016/j.yexcr.2017.12.012. Epub 2017 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验