Suppr超能文献

随机效应荟萃分析中总体治疗效果的区间估计:比较频率派、贝叶斯派和自举法的模拟研究建议

Interval estimation of the overall treatment effect in random-effects meta-analyses: Recommendations from a simulation study comparing frequentist, Bayesian, and bootstrap methods.

机构信息

Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany.

Department of Statistics, TU Dortmund University, Dortmund, Germany.

出版信息

Res Synth Methods. 2021 May;12(3):291-315. doi: 10.1002/jrsm.1471. Epub 2020 Dec 22.

Abstract

There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study is still lacking. Thus, we conduct such a simulation study for continuous and binary outcomes, focusing on the medical field for application. Based on the literature review and some new theoretical considerations, a practicable number of interval estimators is selected for this comparison: the classical normal-approximation interval using the DerSimonian-Laird heterogeneity estimator, the HKSJ interval using either the Paule-Mandel or the Sidik-Jonkman heterogeneity estimator, the Skovgaard higher-order profile likelihood interval, a parametric bootstrap interval, and a Bayesian interval using different priors. We evaluate the performance measures (coverage and interval length) at specific points in the parameter space, that is, not averaging over a prior distribution. In this sense, our study is conducted from a frequentist point of view. We confirm the main finding of the literature review, the general recommendation of the HKSJ method (here with the Sidik-Jonkman heterogeneity estimator). For meta-analyses including only two studies, the high length of the HKSJ interval limits its practical usage. In this case, the Bayesian interval using a weakly informative prior for the heterogeneity may help. Our recommendations are illustrated using a real-world meta-analysis dealing with the efficacy of an intramyocardial bone marrow stem cell transplantation during coronary artery bypass grafting.

摘要

在随机效应荟萃分析中,存在多种总体治疗效果的区间估计方法。最近的一篇文献综述总结了现有的方法,表明在大多数情况下,Hartung-Knapp/Sidik-Jonkman(HKSJ)方法更可取。然而,在常见的模拟研究中,这些方法的定量比较仍然缺乏。因此,我们针对连续和二分类结局进行了这样的模拟研究,重点关注医学领域的应用。基于文献综述和一些新的理论考虑,我们选择了一些可行的区间估计方法进行比较:使用 DerSimonian-Laird 异质性估计量的经典正态逼近区间、使用 Paule-Mandel 或 Sidik-Jonkman 异质性估计量的 HKSJ 区间、Skovgaard 高阶似然比区间、参数 bootstrap 区间和使用不同先验的贝叶斯区间。我们在参数空间的特定点评估性能指标(覆盖度和区间长度),即不进行先验分布的平均。从这个意义上说,我们的研究是从频率主义的角度进行的。我们证实了文献综述的主要发现,即 HKSJ 方法的一般推荐(此处使用 Sidik-Jonkman 异质性估计量)。对于仅包含两项研究的荟萃分析,HKSJ 区间的长度较长限制了其实际应用。在这种情况下,使用异质性的弱信息先验的贝叶斯区间可能会有所帮助。我们使用一个真实的荟萃分析来举例说明我们的建议,该分析涉及在冠状动脉旁路移植术中进行心肌内骨髓干细胞移植的疗效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验