Friede Tim, Röver Christian, Wandel Simon, Neuenschwander Beat
Department of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073, Göttingen, Germany.
Novartis Pharma AG, Oncology, 4002, Basel, Switzerland.
Biom J. 2017 Jul;59(4):658-671. doi: 10.1002/bimj.201500236. Epub 2016 Oct 18.
Random-effects meta-analyses are used to combine evidence of treatment effects from multiple studies. Since treatment effects may vary across trials due to differences in study characteristics, heterogeneity in treatment effects between studies must be accounted for to achieve valid inference. The standard model for random-effects meta-analysis assumes approximately normal effect estimates and a normal random-effects model. However, standard methods based on this model ignore the uncertainty in estimating the between-trial heterogeneity. In the special setting of only two studies and in the presence of heterogeneity, we investigate here alternatives such as the Hartung-Knapp-Sidik-Jonkman method (HKSJ), the modified Knapp-Hartung method (mKH, a variation of the HKSJ method) and Bayesian random-effects meta-analyses with priors covering plausible heterogeneity values; R code to reproduce the examples is presented in an appendix. The properties of these methods are assessed by applying them to five examples from various rare diseases and by a simulation study. Whereas the standard method based on normal quantiles has poor coverage, the HKSJ and mKH generally lead to very long, and therefore inconclusive, confidence intervals. The Bayesian intervals on the whole show satisfying properties and offer a reasonable compromise between these two extremes.
随机效应荟萃分析用于综合多项研究中治疗效果的证据。由于研究特征的差异,治疗效果在不同试验中可能会有所不同,因此必须考虑研究之间治疗效果的异质性,以实现有效的推断。随机效应荟萃分析的标准模型假定效应估计值近似正态分布且随机效应模型为正态分布。然而,基于该模型的标准方法忽略了估计试验间异质性时的不确定性。在仅有两项研究且存在异质性的特殊情况下,我们在此研究了一些替代方法,如哈通-克纳普-西迪克-琼克曼方法(HKSJ)、修正的克纳普-哈通方法(mKH,HKSJ方法的一种变体)以及具有涵盖合理异质性值先验的贝叶斯随机效应荟萃分析;附录中给出了重现这些示例的R代码。通过将这些方法应用于来自各种罕见疾病的五个示例以及进行模拟研究来评估它们的特性。基于正态分位数的标准方法覆盖范围较差,而HKSJ和mKH通常会导致非常长的、因此无定论的置信区间。贝叶斯区间总体上显示出令人满意的特性,并在这两个极端之间提供了合理的折衷。