Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602, Shanghai, China.
University of Chinese Academy of Sciences, 100049, Beijing, China.
Nat Commun. 2020 Dec 4;11(1):6212. doi: 10.1038/s41467-020-20089-0.
Histone 3 Lys 27 trimethylation (H3K27me3)-mediated epigenetic silencing plays a critical role in multiple biological processes. However, the H3K27me3 recognition and transcriptional repression mechanisms are only partially understood. Here, we report a mechanism for H3K27me3 recognition and transcriptional repression. Our structural and biochemical data showed that the BAH domain protein AIPP3 and the PHD proteins AIPP2 and PAIPP2 cooperate to read H3K27me3 and unmodified H3K4 histone marks, respectively, in Arabidopsis. The BAH-PHD bivalent histone reader complex silences a substantial subset of H3K27me3-enriched loci, including a number of development and stress response-related genes such as the RNA silencing effector gene ARGONAUTE 5 (AGO5). We found that the BAH-PHD module associates with CPL2, a plant-specific Pol II carboxyl terminal domain (CTD) phosphatase, to form the BAH-PHD-CPL2 complex (BPC) for transcriptional repression. The BPC complex represses transcription through CPL2-mediated CTD dephosphorylation, thereby causing inhibition of Pol II release from the transcriptional start site. Our work reveals a mechanism coupling H3K27me3 recognition with transcriptional repression through the alteration of Pol II phosphorylation states, thereby contributing to our understanding of the mechanism of H3K27me3-dependent silencing.
组蛋白 3 赖氨酸 27 三甲基化 (H3K27me3) 介导的表观遗传沉默在多种生物学过程中发挥着关键作用。然而,H3K27me3 的识别和转录抑制机制仅部分被理解。在这里,我们报告了一种 H3K27me3 识别和转录抑制的机制。我们的结构和生化数据表明,BAH 结构域蛋白 AIPP3 和 PHD 蛋白 AIPP2 和 PAIPP2 分别在拟南芥中合作读取 H3K27me3 和未修饰的 H3K4 组蛋白标记。BAH-PHD 二价组蛋白阅读器复合物沉默了大量富含 H3K27me3 的基因座,包括一些发育和应激反应相关基因,如 RNA 沉默效应基因 ARGONAUTE 5 (AGO5)。我们发现 BAH-PHD 模块与 CPL2(一种植物特异性 Pol II C 端结构域 (CTD) 磷酸酶)相关联,形成 BAH-PHD-CPL2 复合物(BPC)进行转录抑制。BPC 复合物通过 CPL2 介导的 CTD 去磷酸化抑制转录,从而导致 Pol II 从转录起始位点释放的抑制。我们的工作揭示了一种通过改变 Pol II 磷酸化状态将 H3K27me3 识别与转录抑制偶联的机制,从而有助于我们理解 H3K27me3 依赖性沉默的机制。