Suppr超能文献

枯否细胞释放血小板激活因子导致核酸纳米载体的剂量限制毒性。

Kupffer cell release of platelet activating factor drives dose limiting toxicities of nucleic acid nanocarriers.

机构信息

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.

Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.

出版信息

Biomaterials. 2021 Jan;268:120528. doi: 10.1016/j.biomaterials.2020.120528. Epub 2020 Nov 23.

Abstract

This work establishes that Kupffer cell release of platelet activating factor (PAF), a lipidic molecule with pro-inflammatory and vasoactive signaling properties, dictates dose-limiting siRNA nanocarrier-associated toxicities. High-dose intravenous injection of siRNA-polymer nano-polyplexes (si-NPs) elicited acute, shock-like symptoms in mice, associated with increased plasma PAF and consequently reduced PAF acetylhydrolase (PAF-AH) activity. These symptoms were completely prevented by prophylactic PAF receptor inhibition or Kupffer cell depletion. Assessment of varied si-NP chemistries confirmed that toxicity level correlated to relative uptake of the carrier by liver Kupffer cells and that this toxicity mechanism is dependent on carrier endosome disruptive function. 4T1 tumor-bearing mice, which exhibit increased circulating leukocytes, displayed greater sensitivity to these toxicities. PAF-mediated toxicities were generalizable to commercial delivery reagent in vivo-jetPEI® and an MC3 lipid formulation matched to an FDA-approved nanomedicine. These collective results establish Kupffer cell release of PAF as a key mediator of siRNA nanocarrier toxicity and identify PAFR inhibition as an effective strategy to increase siRNA nanocarrier tolerated dose.

摘要

这项工作证实,库普弗细胞释放血小板激活因子(PAF)是一种具有促炎和血管活性信号作用的脂质分子,决定了剂量限制的 siRNA 纳米载体相关毒性。高剂量静脉注射 siRNA-聚合物纳米多聚物(si-NPs)会在小鼠中引起急性休克样症状,与血浆 PAF 增加有关,从而导致 PAF 乙酰水解酶(PAF-AH)活性降低。PAF 受体抑制或库普弗细胞耗竭可完全预防这些症状。对不同 si-NP 化学性质的评估证实,毒性水平与载体被肝库普弗细胞摄取的相对量相关,并且这种毒性机制依赖于载体内涵体破坏功能。表现出循环白细胞增加的 4T1 肿瘤荷瘤小鼠对这些毒性更为敏感。PAF 介导的毒性可推广至体内-喷射 PEI®商业递送试剂和与 FDA 批准的纳米药物相匹配的 MC3 脂质制剂。这些综合结果确立了 PAF 作为 siRNA 纳米载体毒性的关键介质,并确定了 PAFR 抑制是增加 siRNA 纳米载体耐受剂量的有效策略。

相似文献

1
Kupffer cell release of platelet activating factor drives dose limiting toxicities of nucleic acid nanocarriers.
Biomaterials. 2021 Jan;268:120528. doi: 10.1016/j.biomaterials.2020.120528. Epub 2020 Nov 23.
8
The expression and localization of plasma platelet-activating factor acetylhydrolase in endotoxemic rats.
J Biol Chem. 2000 Jun 30;275(26):19891-6. doi: 10.1074/jbc.M001462200.
10
Role of platelet-activating factor in hepatic responses after bile duct ligation in rats.
Am J Physiol. 1992 Nov;263(5 Pt 1):G587-92. doi: 10.1152/ajpgi.1992.263.5.G587.

引用本文的文献

1
Fabrication of RIG-I-Activating Nanoparticles for Intratumoral Immunotherapy via Flash Nanoprecipitation.
Mol Pharm. 2025 Aug 4;22(8):4597-4611. doi: 10.1021/acs.molpharmaceut.5c00125. Epub 2025 Jul 1.
2
Covalent Polymer-RNA Conjugates for Potent Activation of the RIG-I Pathway.
Adv Healthc Mater. 2025 Feb;14(5):e2303815. doi: 10.1002/adhm.202303815. Epub 2024 May 3.
4
Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis.
Front Immunol. 2023 Aug 3;14:1224335. doi: 10.3389/fimmu.2023.1224335. eCollection 2023.
5
Core polymer optimization of ternary siRNA nanoparticles enhances in vivo safety, pharmacokinetics, and tumor gene silencing.
Biomaterials. 2023 Jun;297:122098. doi: 10.1016/j.biomaterials.2023.122098. Epub 2023 Mar 28.
7
8
Understanding Nanomaterial-Liver Interactions to Facilitate the Development of Safer Nanoapplications.
Adv Mater. 2022 Mar;34(11):e2106456. doi: 10.1002/adma.202106456. Epub 2022 Feb 3.
9
Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects .
Bioconjug Chem. 2021 May 19;32(5):928-941. doi: 10.1021/acs.bioconjchem.1c00081. Epub 2021 Apr 19.
10
Therapeutic RNA Delivery for COVID and Other Diseases.
Adv Healthc Mater. 2021 Aug;10(15):e2002022. doi: 10.1002/adhm.202002022. Epub 2021 Mar 4.

本文引用的文献

1
Genetically Encoded Split-Luciferase Biosensors to Measure Endosome Disruption Rapidly in Live Cells.
ACS Sens. 2020 Jul 24;5(7):1929-1936. doi: 10.1021/acssensors.0c00103. Epub 2020 Jul 13.
2
The current state and future directions of RNAi-based therapeutics.
Nat Rev Drug Discov. 2019 Jun;18(6):421-446. doi: 10.1038/s41573-019-0017-4.
3
Gal8 Visualization of Endosome Disruption Predicts Carrier-Mediated Biologic Drug Intracellular Bioavailability.
ACS Nano. 2019 Feb 26;13(2):1136-1152. doi: 10.1021/acsnano.8b05482. Epub 2019 Jan 18.
4
5
An Optimized Evans Blue Protocol to Assess Vascular Leak in the Mouse.
J Vis Exp. 2018 Sep 12(139):57037. doi: 10.3791/57037.
6
Unintended effects of drug carriers: Big issues of small particles.
Adv Drug Deliv Rev. 2018 May;130:90-112. doi: 10.1016/j.addr.2018.06.023. Epub 2018 Jul 3.
7
An efficient method to isolate Kupffer cells eliminating endothelial cell contamination and selective bias.
J Leukoc Biol. 2018 Sep;104(3):579-586. doi: 10.1002/JLB.1TA0517-169R. Epub 2018 Apr 1.
8
Effect of removing Kupffer cells on nanoparticle tumor delivery.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):E10871-E10880. doi: 10.1073/pnas.1713390114. Epub 2017 Dec 5.
9
Update on the clinical utility of an RNA interference-based treatment: focus on Patisiran.
Pharmgenomics Pers Med. 2017 Nov 10;10:267-278. doi: 10.2147/PGPM.S87945. eCollection 2017.
10
Comprehensive comparison of three different animal models for systemic inflammation.
J Biomed Sci. 2017 Aug 24;24(1):60. doi: 10.1186/s12929-017-0370-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验