Bus Christine, Zizmare Laimdota, Feldkaemper Marita, Geisler Sven, Zarani Maria, Schaedler Anna, Klose Franziska, Admard Jakob, Mageean Craig J, Arena Giuseppe, Fallier-Becker Petra, Ugun-Klusek Aslihan, Maruszczak Klaudia K, Kapolou Konstantina, Schmid Benjamin, Rapaport Doron, Ueffing Marius, Casadei Nicolas, Krüger Rejko, Gasser Thomas, Vogt Weisenhorn Daniela M, Kahle Philipp J, Trautwein Christoph, Gloeckner Christian J, Fitzgerald Julia C
Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Strasse 27, 72076, Tübingen, Germany.
DZNE - German Center for Neurodegenerative Diseases, Tübingen, Germany.
iScience. 2020 Nov 13;23(12):101797. doi: 10.1016/j.isci.2020.101797. eCollection 2020 Dec 18.
PINK1 loss-of-function mutations cause early onset Parkinson disease. PINK1-Parkin mediated mitophagy has been well studied, but the relevance of the endogenous process in the brain is debated. Here, the absence of PINK1 in human dopaminergic neurons inhibits ionophore-induced mitophagy and reduces mitochondrial membrane potential. Compensatory, mitochondrial renewal maintains mitochondrial morphology and protects the respiratory chain. This is paralleled by metabolic changes, including inhibition of the TCA cycle enzyme Aconitase, accumulation of NAD, and metabolite depletion. Loss of PINK1 disrupts dopamine metabolism by critically affecting its synthesis and uptake. The mechanism involves steering of key amino acids toward energy production rather than neurotransmitter metabolism and involves cofactors related to the vitamin B6 salvage pathway identified using unbiased multi-omics approaches. We propose that reduction of mitochondrial membrane potential that cannot be controlled by PINK1 signaling initiates metabolic compensation that has neurometabolic consequences relevant to Parkinson disease.
PINK1功能丧失突变导致早发性帕金森病。PINK1-帕金介导的线粒体自噬已得到充分研究,但该内源性过程在大脑中的相关性仍存在争议。在这里,人类多巴胺能神经元中PINK1的缺失抑制了离子载体诱导的线粒体自噬,并降低了线粒体膜电位。作为补偿,线粒体更新维持线粒体形态并保护呼吸链。这伴随着代谢变化,包括三羧酸循环酶乌头酸酶的抑制、NAD的积累和代谢物耗竭。PINK1的缺失通过严重影响多巴胺的合成和摄取来扰乱多巴胺代谢。其机制涉及将关键氨基酸导向能量产生而非神经递质代谢,并涉及使用无偏多组学方法鉴定的与维生素B6补救途径相关的辅因子。我们提出,无法由PINK1信号控制的线粒体膜电位降低会引发代谢补偿,从而产生与帕金森病相关的神经代谢后果。