Suppr超能文献

线粒体生物合成:药理学方法。

Mitochondrial biogenesis: pharmacological approaches.

作者信息

Valero Teresa

机构信息

Faculty of Biotechnology Agriculture University of Athens Iera Odos 75 11855 Athens Greece.

出版信息

Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.

Abstract

Organelle biogenesis is concomitant to organelle inheritance during cell division. It is necessary that organelles double their size and divide to give rise to two identical daughter cells. Mitochondrial biogenesis occurs by growth and division of pre-existing organelles and is temporally coordinated with cell cycle events [1]. However, mitochondrial biogenesis is not only produced in association with cell division. It can be produced in response to an oxidative stimulus, to an increase in the energy requirements of the cells, to exercise training, to electrical stimulation, to hormones, during development, in certain mitochondrial diseases, etc. [2]. Mitochondrial biogenesis is therefore defined as the process via which cells increase their individual mitochondrial mass [3]. Recent discoveries have raised attention to mitochondrial biogenesis as a potential target to treat diseases which up to date do not have an efficient cure. Mitochondria, as the major ROS producer and the major antioxidant producer exert a crucial role within the cell mediating processes such as apoptosis, detoxification, Ca2+ buffering, etc. This pivotal role makes mitochondria a potential target to treat a great variety of diseases. Mitochondrial biogenesis can be pharmacologically manipulated. This issue tries to cover a number of approaches to treat several diseases through triggering mitochondrial biogenesis. It contains recent discoveries in this novel field, focusing on advanced mitochondrial therapies to chronic and degenerative diseases, mitochondrial diseases, lifespan extension, mitohormesis, intracellular signaling, new pharmacological targets and natural therapies. It contributes to the field by covering and gathering the scarcely reported pharmacological approaches in the novel and promising field of mitochondrial biogenesis. There are several diseases that have a mitochondrial origin such as chronic progressive external ophthalmoplegia (CPEO) and the Kearns- Sayre syndrome (KSS), myoclonic epilepsy with ragged-red fibers (MERRF), mitochondrial encephalomyopathy, lactic acidosis and strokelike episodes (MELAS), Leber's hereditary optic neuropathy (LHON), the syndrome of neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP), and Leigh's syndrome. Likewise, other diseases in which mitochondrial dysfunction plays a very important role include neurodegenerative diseases, diabetes or cancer. Generally, in mitochondrial diseases a mutation in the mitochondrial DNA leads to a loss of functionality of the OXPHOS system and thus to a depletion of ATP and overproduction of ROS, which can, in turn, induce further mtDNA mutations. The work by Yu-Ting Wu, Shi-Bei Wu, and Yau-Huei Wei (Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taiwan) [4] focuses on the aforementioned mitochondrial diseases with special attention to the compensatory mechanisms that prompt mitochondria to produce more energy even under mitochondrial defect-conditions. These compensatory mechanisms include the overexpression of antioxidant enzymes, mitochondrial biogenesis and overexpression of respiratory complex subunits, as well as metabolic shift to glycolysis. The pathways observed to be related to mitochondrial biogenesis as a compensatory adaptation to the energetic deficits in mitochondrial diseases are described (PGC- 1, Sirtuins, AMPK). Several pharmacological strategies to trigger these signaling cascades, according to these authors, are the use of bezafibrate to activate the PPAR-PGC-1α axis, the activation of AMPK by resveratrol and the use of Sirt1 agonists such as quercetin or resveratrol. Other strategies currently used include the addition of antioxidant supplements to the diet (dietary supplementation with antioxidants) such as L-carnitine, coenzyme Q10,MitoQ10 and other mitochondria-targeted antioxidants,N-acetylcysteine (NAC), vitamin C, vitamin E vitamin K1, vitamin B, sodium pyruvate or -lipoic acid. As aforementioned, other diseases do not have exclusively a mitochondrial origin but they might have an important mitochondrial component both on their onset and on their development. This is the case of type 2 diabetes or neurodegenerative diseases. Type 2 diabetes is characterized by a peripheral insulin resistance accompanied by an increased secretion of insulin as a compensatory system. Among the explanations about the origin of insulin resistance Mónica Zamora and Josep A. Villena (Department of Experimental and Health Sciences, Universitat Pompeu Fabra / Laboratory of Metabolism and Obesity, Universitat Autònoma de Barcelona, Spain) [5] consider the hypothesis that mitochondrial dysfunction, e.g. impaired (mitochondrial) oxidative capacity of the cell or tissue, is one of the main underlying causes of insulin resistance and type 2 diabetes. Although this hypothesis is not free of controversy due to the uncertainty on the sequence of events during type 2 diabetes onset, e.g. whether mitochondrial dysfunction is the cause or the consequence of insulin resistance, it has been widely observed that improving mitochondrial function also improves insulin sensitivity and prevents type 2 diabetes. Thus restoring oxidative capacity by increasing mitochondrial mass appears as a suitable strategy to treat insulin resistance. The effort made by researchers trying to understand the signaling pathways mediating mitochondrial biogenesis has uncovered new potential pharmacological targets and opens the perspectives for the design of suitable treatments for insulin resistance. In addition some of the current used strategies could be used to treat insulin resistance such as lifestyle interventions (caloric restriction and endurance exercise) and pharmacological interventions (thiazolidinediones and other PPAR agonists, resveratrol and other calorie restriction mimetics, AMPK activators, ERR activators). Mitochondrial biogenesis is of special importance in modern neurochemistry because of the broad spectrum of human diseases arising from defects in mitochondrial ion and ROS homeostasis, energy production and morphology [1]. Parkinson´s Disease (PD) is a very good example of this important mitochondrial component on neurodegenerative diseases. Anuradha Yadav, Swati Agrawal, Shashi Kant Tiwari, and Rajnish K. Chaturvedi (CSIR-Indian Institute of Toxicology Research / Academy of Scientific and Innovative Research, India) [6] remark in their review the role of mitochondrial dysfunction in PD with special focus on the role of oxidative stress and bioenergetic deficits. These alterations may have their origin on pathogenic gene mutations in important genes such as DJ-1, -syn, parkin, PINK1 or LRRK2. These mutations, in turn, may cause defects in mitochondrial dynamics (key events like fission/fusion, biogenesis, trafficking in retrograde and anterograde directions, and mitophagy). This work reviews different strategies to enhance mitochondrial bioenergetics in order to ameliorate the neurodegenerative process, with an emphasis on clinical trials reports that indicate their potential. Among them creatine, Coenzyme Q10 and mitochondrial targeted antioxidants/peptides are reported to have the most remarkable effects in clinical trials. They highlight a dual effect of PGC-1α expression on PD prognosis. Whereas a modest expression of this transcriptional co-activator results in positive effects, a moderate to substantial overexpession may have deleterious consequences. As strategies to induce PGC-1α activation, these authors remark the possibility to activate Sirt1 with resveratrol, to use PPAR agonists such as pioglitazone, rosiglitazone, fenofibrate and bezafibrate. Other strategies include the triggering of Nrf2/antioxidant response element (ARE) pathway by triterpenoids (derivatives of oleanolic acid) or by Bacopa monniera, the enhancement of ATP production by carnitine and -lipoic acid. Mitochondrial dysfunctions are the prime source of neurodegenerative diseases and neurodevelopmental disorders. In the context of neural differentiation, Martine Uittenbogaard and Anne Chiaramello (Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, USA) [7] thoroughly describe the implication of mitochondrial biogenesis on neuronal differentiation, its timing, its regulation by specific signaling pathways and new potential therapeutic strategies. The maintenance of mitochondrial homeostasis is crucial for neuronal development. A mitochondrial dynamic balance is necessary between mitochondrial fusion, fission and quality control systems and mitochondrial biogenesis. Concerning the signaling pathways leading to mitochondrial biogenesis this review highlights the implication of different regulators such as AMPK, SIRT1, PGC-1α, NRF1, NRF2, Tfam, etc. on the specific case of neuronal development, providing examples of diseases in which these pathways are altered and transgenic mouse models lacking these regulators. A common hallmark of several neurodegenerative diseases (Huntington´s Disease, Alzheimer´s Disease and Parkinson´s Disease) is the impaired function or expression of PGC-1α, the master regulator of mitochondrial biogenesis. Among the promising strategies to ameliorate mitochondrial-based diseases these authors highlight the induction of PGC-1α via activation of PPAR receptors (rosiglitazone, bezafibrate) or modulating its activity by AMPK (AICAR, metformin, resveratrol) or SIRT1 (SRT1720 and several isoflavone-derived compounds). This article also presents a review of the current animal and cellular models useful to study mitochondriogenesis. Although it is known that many neurodegenerative and neurodevelopmental diseases are originated in mitochondria, the regulation of mitochondrial biogenesis has never been extensively studied. (ABSTRACT TRUNCATED)

摘要

细胞器生物发生与细胞分裂过程中的细胞器遗传相伴发生。细胞器必须增大其尺寸并进行分裂,以产生两个相同的子细胞。线粒体生物发生通过已有细胞器的生长和分裂进行,并在时间上与细胞周期事件协调一致[1]。然而,线粒体生物发生不仅与细胞分裂相关。它可因氧化刺激、细胞能量需求增加、运动训练、电刺激、激素、发育过程、某些线粒体疾病等而发生[2]。因此,线粒体生物发生被定义为细胞增加其个体线粒体质量的过程[3]。最近的发现使人们将注意力集中在线粒体生物发生上,它作为一种潜在的治疗靶点,可用于治疗迄今尚无有效治愈方法的疾病。线粒体作为主要的活性氧(ROS)产生者和主要的抗氧化剂产生者,在介导细胞内诸如凋亡、解毒、Ca2+缓冲等过程中发挥着关键作用。这一关键作用使线粒体成为治疗多种疾病的潜在靶点。线粒体生物发生可通过药理学手段进行调控。本期特刊试图涵盖通过触发线粒体生物发生来治疗多种疾病的一些方法。它包含了这一新兴领域的最新发现,重点关注针对慢性和退行性疾病、线粒体疾病、寿命延长、线粒体应激反应、细胞内信号传导、新药理学靶点和自然疗法的先进线粒体疗法。它通过涵盖和收集线粒体生物发生这一新颖且有前景的领域中鲜为人知的药理学方法,为该领域做出了贡献。有几种疾病起源于线粒体,如慢性进行性外眼肌麻痹(CPEO)和卡恩斯-塞尔综合征(KSS)、肌阵挛性癫痫伴破碎红纤维(MERRF)、线粒体脑肌病、乳酸酸中毒和卒中样发作(MELAS)、Leber遗传性视神经病变(LHON)、神经源性肌无力、共济失调和色素性视网膜炎综合征(NARP)以及 Leigh 综合征。同样,线粒体功能障碍在其中起非常重要作用的其他疾病包括神经退行性疾病、糖尿病或癌症。一般来说,在线粒体疾病中,线粒体 DNA 的突变会导致氧化磷酸化(OXPHOS)系统功能丧失,从而导致 ATP 耗竭和 ROS 过量产生,进而可诱导进一步的线粒体 DNA 突变。台湾阳明大学的吴育婷、吴世北和魏耀辉(生物化学与分子生物学系)[4]的研究聚焦于上述线粒体疾病,特别关注促使线粒体即使在存在线粒体缺陷的情况下仍能产生更多能量的补偿机制。这些补偿机制包括抗氧化酶的过表达、线粒体生物发生和呼吸复合物亚基的过表达,以及向糖酵解的代谢转变。文中描述了观察到的与线粒体生物发生相关的途径,这些途径是作为对线粒体疾病中能量不足的补偿性适应(PGC-1、沉默调节蛋白、腺苷酸活化蛋白激酶)。据这些作者称,触发这些信号级联反应的几种药理学策略包括使用苯扎贝特激活 PPAR-PGC-1α轴、白藜芦醇激活 AMPK 以及使用 Sirt1 激动剂如槲皮素或白藜芦醇。目前使用的其他策略包括在饮食中添加抗氧化剂补充剂(饮食补充抗氧化剂),如左旋肉碱、辅酶 Q10、MitoQ10 和其他线粒体靶向抗氧化剂、N-乙酰半胱氨酸(NAC)、维生素 C、维生素 E、维生素 K1、维生素 B、丙酮酸钠或α-硫辛酸。如前所述,其他疾病并非完全起源于线粒体,但它们在发病和发展过程中可能都有重要的线粒体成分。2 型糖尿病或神经退行性疾病就是这种情况。2 型糖尿病的特征是外周胰岛素抵抗,并伴有胰岛素分泌增加作为一种代偿系统。在关于胰岛素抵抗起源的解释中,西班牙庞培法布拉大学实验与健康科学系/巴塞罗那自治大学代谢与肥胖实验室的莫妮卡·萨莫拉和何塞普·A·维列纳[5]考虑了这样一种假说,即线粒体功能障碍,例如细胞或组织的(线粒体)氧化能力受损,是胰岛素抵抗和 2 型糖尿病的主要潜在原因之一。尽管由于 2 型糖尿病发病过程中事件顺序存在不确定性,例如线粒体功能障碍是胰岛素抵抗的原因还是结果,这一假说存在争议,但人们广泛观察到改善线粒体功能也能提高胰岛素敏感性并预防 2 型糖尿病。因此,通过增加线粒体质量来恢复氧化能力似乎是治疗胰岛素抵抗的合适策略。研究人员为理解介导线粒体生物发生的信号通路所做的努力揭示了新的潜在药理学靶点,并为设计治疗胰岛素抵抗的合适疗法开辟了前景。此外,一些目前使用的策略可用于治疗胰岛素抵抗,如生活方式干预(热量限制和耐力运动)和药理学干预(噻唑烷二酮类药物和其他 PPAR 激动剂、白藜芦醇和其他热量限制模拟物、AMPK 激活剂、雌激素相关受体激活剂)。由于线粒体离子和 ROS 稳态、能量产生及形态缺陷引发的人类疾病种类繁多,线粒体生物发生在现代神经化学中具有特殊重要性[1]。帕金森病(PD)就是线粒体在神经退行性疾病中这一重要作用的一个很好例子。印度毒理学研究所/科学与创新研究学院的阿努拉德哈·亚达夫、斯瓦蒂·阿格拉瓦尔、沙希·坎特·蒂瓦里和拉吉尼什·K·查图尔维迪[6]在他们的综述中阐述了线粒体功能障碍在 PD 中的作用,特别关注氧化应激和生物能量缺陷的作用。这些改变可能源于重要基因如 DJ-1、α-突触核蛋白、帕金蛋白、PINK1 或 LRRK2 的致病基因突变。反过来,这些突变可能导致线粒体动力学缺陷(如裂变/融合、生物发生、逆行和顺行运输以及线粒体自噬等关键事件)。这项工作综述了增强线粒体生物能量学以改善神经退行性过程的不同策略,重点是表明其潜力的临床试验报告。其中,肌酸、辅酶 Q10 和线粒体靶向抗氧化剂/肽在临床试验中被报道具有最显著的效果。他们强调了 PGC-1α表达对 PD 预后的双重影响。虽然这种转录共激活因子的适度表达会产生积极影响,但中度至大量的过表达可能会产生有害后果。作为诱导 PGC-1α激活的策略,请这些作者提到用白藜芦醇激活 Sirt1 的可能性,使用 PPAR 激动剂如吡格列酮、罗格列酮、非诺贝特和苯扎贝特。其他策略包括通过三萜类化合物(齐墩果酸衍生物)或积雪草触发 Nrf2/抗氧化反应元件(ARE)途径,通过肉碱和α-硫辛酸增强 ATP 产生。线粒体功能障碍是神经退行性疾病和神经发育障碍的主要根源。在神经分化的背景下,美国乔治华盛顿大学医学院和健康科学学院解剖学与再生生物学系的玛蒂娜·尤滕博加德和安妮·基亚拉梅洛[7]全面描述了线粒体生物发生对神经元分化的影响、其时间、特定信号通路对其的调控以及新的潜在治疗策略。线粒体稳态的维持对神经元发育至关重要。线粒体融合、裂变和质量控制系统与线粒体生物发生之间需要线粒体动态平衡。关于导致线粒体生物发生的信号通路,本综述强调了不同调节因子如 AMPK、SIRT1、PGC-1α、NRF1、NRF2、线粒体转录因子 A(Tfam)等在神经元发育特定情况下的影响,提供了这些途径发生改变的疾病实例以及缺乏这些调节因子的转基因小鼠模型。几种神经退行性疾病(亨廷顿舞蹈病、阿尔茨海默病和帕金森病)的一个共同特征是线粒体生物发生的主要调节因子 PGC-1α功能受损或表达异常。在改善基于线粒体的疾病的有前景策略中,这些作者强调通过激活 PPAR 受体(罗格列酮、苯扎贝特)诱导 PGC-1α,或通过 AMPK(AICAR、二甲双胍、白藜芦醇)或 SIRT1(SRT1720 和几种异黄酮衍生化合物)调节其活性。本文还对目前用于研究线粒体生成的动物和细胞模型进行了综述。尽管已知许多神经退行性和神经发育疾病起源于线粒体,但线粒体生物发生的调控从未得到广泛研究。(摘要截断)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验