Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States.
D. E. Shaw India Private Ltd., Plot No. 573, Jubilee Hills, Hyderabad, Telangana 500096, India.
J Chem Theory Comput. 2021 Jan 12;17(1):450-462. doi: 10.1021/acs.jctc.0c01004. Epub 2020 Dec 29.
Linking two fragments binding in nearby subpockets together has become an important technique in fragment-based drug discovery to optimize the binding potency of fragment hits. Despite the expected favorable translational and orientational entropic contribution to the binding free energy of the linked molecule, brute force enumeration of chemical linker for linking fragments is rarely successful, and the vast majority of linked molecules do not exhibit the expected gains of binding potency. In this paper, we examine the physical factors that contribute to the change of binding free energy from fragment linking and develop a method to rigorously calculate these different physical contributions. We find from these analyses that multiple confounding factors make successful fragment linking strategies rare, including (1) possible change of the binding mode of the fragments in the linked state compared to separate binding of the fragments, (2) unfavorable intramolecular strain energy of the bioactive conformation of the linked molecule, (3) unfavorable interaction between the linker and the protein, (4) favorable interaction energies between two fragments in solution when not chemically linked that offset the expected entropy loss for the formation of fragment pair, (5) complex compensating configurational entropic effects beyond the simplistic rotational and translational analysis. We here have applied a statistically mechanically rigorous approach to compute the fragment linking coefficients of 10 pharmaceutically interesting systems and quantify the contribution of each physical component to the binding free energy of the linked molecule. Based on these studies, we have found that the change in the relative configurational entropy of the two fragments in the protein binding pocket (a term neglected to our knowledge in all previous analyses) substantially offsets the favorable expected rotational and translational entropic contributions to the binding free energy of the linked molecule. This configurational restriction of the fragments in the binding pocket of the proteins is found to be, in our analysis, the dominant reason why most fragment linking strategies do not exhibit the expected gains of binding potency. These findings have further provided rich physical insights, which we expect should facilitate more successful fragment linking strategies to be formulated in the future.
将两个结合在附近亚口袋中的片段连接起来,已经成为基于片段的药物发现中优化片段命中物结合效力的重要技术。尽管预期连接分子的结合自由能具有有利的翻译和取向熵贡献,但通过蛮力枚举化学连接子来连接片段的方法很少成功,而且绝大多数连接分子并没有表现出预期的结合效力的提高。在本文中,我们研究了导致片段连接时结合自由能变化的物理因素,并开发了一种严格计算这些不同物理贡献的方法。我们从这些分析中发现,许多混杂因素使得成功的片段连接策略变得罕见,包括:(1)与片段单独结合相比,片段在连接状态下的结合模式可能发生变化;(2)连接分子的生物活性构象的不利分子内应变能;(3)连接子与蛋白质之间的不利相互作用;(4)在未化学连接时,两个片段在溶液中的有利相互作用能,抵消了形成片段对的预期熵损失;(5)除了简单的旋转和平移分析之外,复杂的补偿构象熵效应。我们在这里应用了一种统计力学上严格的方法来计算 10 个有药用价值的系统的片段连接系数,并量化每个物理分量对连接分子结合自由能的贡献。基于这些研究,我们发现,在蛋白质结合口袋中两个片段的相对构象熵的变化(在我们所知的所有以前的分析中都忽略了这一术语),大大抵消了连接分子的结合自由能的预期旋转和平移熵贡献。我们的分析发现,在蛋白质的结合口袋中,片段的这种构象限制是大多数片段连接策略没有表现出预期的结合效力提高的主要原因。这些发现进一步提供了丰富的物理见解,我们期望这些见解将有助于未来制定出更成功的片段连接策略。