Suppr超能文献

通过片段连接将 14-3-3 蛋白-蛋白相互作用的束缚型稳定器转变为自由型稳定器。

From Tethered to Freestanding Stabilizers of 14-3-3 Protein-Protein Interactions through Fragment Linking.

机构信息

Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands.

Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA.

出版信息

Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202308004. doi: 10.1002/anie.202308004. Epub 2023 Aug 1.

Abstract

Small-molecule stabilization of protein-protein interactions (PPIs) is a promising strategy in chemical biology and drug discovery. However, the systematic discovery of PPI stabilizers remains a largely unmet challenge. Herein we report a fragment-linking approach targeting the interface of 14-3-3 and a peptide derived from the estrogen receptor alpha (ERα) protein. Two classes of fragments-a covalent and a noncovalent fragment-were co-crystallized and subsequently linked, resulting in a noncovalent hybrid molecule in which the original fragment interactions were largely conserved. Supported by 20 crystal structures, this initial hybrid molecule was further optimized, resulting in selective, 25-fold stabilization of the 14-3-3/ERα interaction. The high-resolution structures of both the single fragments, their co-crystal structures and those of the linked fragments document a feasible strategy to develop orthosteric PPI stabilizers by linking to an initial tethered fragment.

摘要

小分子稳定蛋白质-蛋白质相互作用(PPIs)是化学生物学和药物发现中很有前途的策略。然而,系统地发现 PPI 稳定剂仍然是一个尚未得到满足的挑战。在此,我们报告了一种针对 14-3-3 和源自雌激素受体α(ERα)蛋白的肽的界面的片段连接方法。两个类别的片段-共价和非共价片段-被共结晶,然后连接,得到一个非共价的混合分子,其中原始片段相互作用在很大程度上被保留。在 20 个晶体结构的支持下,对该初始混合分子进行了进一步优化,导致 14-3-3/ERα 相互作用的选择性、25 倍稳定化。单个片段的高分辨率结构、它们的共晶结构以及连接片段的结构证明了通过连接到初始连接片段来开发正位 PPI 稳定剂的可行策略。

相似文献

1
From Tethered to Freestanding Stabilizers of 14-3-3 Protein-Protein Interactions through Fragment Linking.
Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202308004. doi: 10.1002/anie.202308004. Epub 2023 Aug 1.
2
Discovery of 14-3-3 PPI Stabilizers by Extension of an Amidine-Substituted Thiophene Fragment.
Chembiochem. 2024 Jan 2;25(1):e202300636. doi: 10.1002/cbic.202300636. Epub 2023 Nov 17.
3
Site-Directed Fragment-Based Screening for the Discovery of Protein-Protein Interaction Stabilizers.
J Am Chem Soc. 2019 Feb 27;141(8):3524-3531. doi: 10.1021/jacs.8b11658. Epub 2019 Feb 19.
4
Linking Chemical Fragments, "Gluing" Protein Complexes, Connecting across Cultures.
Angew Chem Int Ed Engl. 2023 Dec 21;62(52):e202314425. doi: 10.1002/anie.202314425. Epub 2023 Oct 30.
5
Fragment-Based Stabilizers of Protein-Protein Interactions through Imine-Based Tethering.
Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21520-21524. doi: 10.1002/anie.202008585. Epub 2020 Sep 25.
6
Fragment Screening Yields a Small-Molecule Stabilizer of 14-3-3 Dimers That Modulates Client Protein Interactions.
Chembiochem. 2022 Sep 5;23(17):e202200178. doi: 10.1002/cbic.202200178. Epub 2022 Jul 19.
8
A Systematic Approach to the Discovery of Protein-Protein Interaction Stabilizers.
ACS Cent Sci. 2023 Apr 18;9(5):937-946. doi: 10.1021/acscentsci.2c01449. eCollection 2023 May 24.
9
Fluorescence Anisotropy-Based Tethering for Discovery of Protein-Protein Interaction Stabilizers.
ACS Chem Biol. 2020 Dec 18;15(12):3143-3148. doi: 10.1021/acschembio.0c00646. Epub 2020 Nov 16.
10
Fragment-based Differential Targeting of PPI Stabilizer Interfaces.
J Med Chem. 2020 Jul 9;63(13):6694-6707. doi: 10.1021/acs.jmedchem.9b01942. Epub 2020 Jun 23.

引用本文的文献

1
Role of the YWHAG gene mutations in Developmental and Epileptic Encephalopathy.
Front Neurosci. 2025 Aug 15;19:1641250. doi: 10.3389/fnins.2025.1641250. eCollection 2025.
2
Scaffold-hopping for molecular glues targeting the 14-3-3/ERα complex.
Nat Commun. 2025 Jul 14;16(1):6467. doi: 10.1038/s41467-025-61176-4.
3
Nondegradative Synthetic Molecular Glues Enter the Clinic.
ChemMedChem. 2025 May 19;20(10):e202500048. doi: 10.1002/cmdc.202500048. Epub 2025 Apr 14.
4
Present and future structural biology activities at DESY and the European XFEL.
J Synchrotron Radiat. 2025 Mar 1;32(Pt 2):474-485. doi: 10.1107/S1600577525000669. Epub 2025 Feb 18.
5
Proximity-enhanced cysteine-histidine crosslinking for elucidating intrinsically disordered and other protein complexes.
Chem Sci. 2025 Jan 7;16(8):3523-3535. doi: 10.1039/d4sc07419j. eCollection 2025 Feb 19.
6
Targeted Protein Localization by Covalent 14-3-3 Recruitment.
J Am Chem Soc. 2024 Sep 11;146(36):24788-24799. doi: 10.1021/jacs.3c12389. Epub 2024 Aug 28.
7
Fragment-Based Interrogation of the 14-3-3/TAZ Protein-Protein Interaction.
Biochemistry. 2024 Sep 3;63(17):2196-2206. doi: 10.1021/acs.biochem.4c00248. Epub 2024 Aug 22.
8
Development of a NanoBRET assay for evaluation of 14-3-3σ molecular glues.
SLAS Discov. 2024 Jul;29(5):100165. doi: 10.1016/j.slasd.2024.100165. Epub 2024 May 24.
9
14-3-3 Protein-Protein Interactions: From Mechanistic Understanding to Their Small-Molecule Stabilization.
Chembiochem. 2024 Jul 15;25(14):e202400214. doi: 10.1002/cbic.202400214. Epub 2024 Jun 24.
10
Molecular glues for protein-protein interactions: Progressing toward a new dream.
Cell Chem Biol. 2024 Jun 20;31(6):1064-1088. doi: 10.1016/j.chembiol.2024.04.002. Epub 2024 May 2.

本文引用的文献

1
Molecular basis and dual ligand regulation of tetrameric estrogen receptor α/14-3-3ζ protein complex.
J Biol Chem. 2023 Jul;299(7):104855. doi: 10.1016/j.jbc.2023.104855. Epub 2023 May 22.
2
General Theory of Fragment Linking in Molecular Design: Why Fragment Linking Rarely Succeeds and How to Improve Outcomes.
J Chem Theory Comput. 2021 Jan 12;17(1):450-462. doi: 10.1021/acs.jctc.0c01004. Epub 2020 Dec 29.
3
Fluorescence Anisotropy-Based Tethering for Discovery of Protein-Protein Interaction Stabilizers.
ACS Chem Biol. 2020 Dec 18;15(12):3143-3148. doi: 10.1021/acschembio.0c00646. Epub 2020 Nov 16.
4
Fragment-Based Stabilizers of Protein-Protein Interactions through Imine-Based Tethering.
Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21520-21524. doi: 10.1002/anie.202008585. Epub 2020 Sep 25.
5
PROTACs: An Emerging Therapeutic Modality in Precision Medicine.
Cell Chem Biol. 2020 Aug 20;27(8):998-1014. doi: 10.1016/j.chembiol.2020.07.020. Epub 2020 Aug 13.
7
Fragment-based Differential Targeting of PPI Stabilizer Interfaces.
J Med Chem. 2020 Jul 9;63(13):6694-6707. doi: 10.1021/acs.jmedchem.9b01942. Epub 2020 Jun 23.
8
Selectivity via Cooperativity: Preferential Stabilization of the p65/14-3-3 Interaction with Semisynthetic Natural Products.
J Am Chem Soc. 2020 Jul 8;142(27):11772-11783. doi: 10.1021/jacs.0c02151. Epub 2020 Jun 23.
9
Design of Drug-Like Protein-Protein Interaction Stabilizers Guided By Chelation-Controlled Bioactive Conformation Stabilization.
Chemistry. 2020 Jun 2;26(31):7131-7139. doi: 10.1002/chem.202001608. Epub 2020 May 11.
10
Unifying principles of bifunctional, proximity-inducing small molecules.
Nat Chem Biol. 2020 Apr;16(4):369-378. doi: 10.1038/s41589-020-0469-1. Epub 2020 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验