Mishra Chandra Bhushan, Pandey Preeti, Sharma Ravi Datta, Malik Md Zubbair, Mongre Raj Kumar, Lynn Andrew M, Prasad Rajendra, Jeon Raok, Prakash Amresh
College of Pharmacy, Sookmyung Women's University, Seoul, South Korea.
Department of Chemistry & Biochemistry, University of Oklahoma, OK, USA.
Brief Bioinform. 2021 Mar 22;22(2):1346-1360. doi: 10.1093/bib/bbaa378.
The global pandemic crisis, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed the lives of millions of people across the world. Development and testing of anti-SARS-CoV-2 drugs or vaccines have not turned to be realistic within the timeframe needed to combat this pandemic. Here, we report a comprehensive computational approach to identify the multi-targeted drug molecules against the SARS-CoV-2 proteins, whichare crucially involved in the viral-host interaction, replication of the virus inside the host, disease progression and transmission of coronavirus infection. Virtual screening of 75 FDA-approved potential antiviral drugs against the target proteins, spike (S) glycoprotein, human angiotensin-converting enzyme 2 (hACE2), 3-chymotrypsin-like cysteine protease (3CLpro), cathepsin L (CTSL), nucleocapsid protein, RNA-dependent RNA polymerase (RdRp) and non-structural protein 6 (NSP6), resulted in the selection of seven drugs which preferentially bind to the target proteins. Further, the molecular interactions determined by molecular dynamics simulation revealed that among the 75 drug molecules, catechin can effectively bind to 3CLpro, CTSL, RBD of S protein, NSP6 and nucleocapsid protein. It is more conveniently involved in key molecular interactions, showing binding free energy (ΔGbind) in the range of -5.09 kcal/mol (CTSL) to -26.09 kcal/mol (NSP6). At the binding pocket, catechin is majorly stabilized by the hydrophobic interactions, displays ΔEvdW values: -7.59 to -37.39 kcal/mol. Thus, the structural insights of better binding affinity and favorable molecular interaction of catechin toward multiple target proteins signify that catechin can be potentially explored as a multi-targeted agent against COVID-19.
由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的全球大流行危机——2019冠状病毒病(COVID-19),已导致全球数百万人死亡。在对抗这一流行病所需的时间范围内,开发和测试抗SARS-CoV-2药物或疫苗并不现实。在此,我们报告一种全面的计算方法,以识别针对SARS-CoV-2蛋白的多靶点药物分子,这些蛋白在病毒与宿主的相互作用、病毒在宿主体内的复制、疾病进展以及冠状病毒感染的传播中起着关键作用。针对刺突(S)糖蛋白、人血管紧张素转换酶2(hACE2)、3-糜蛋白酶样半胱氨酸蛋白酶(3CLpro)、组织蛋白酶L(CTSL)、核衣壳蛋白、RNA依赖性RNA聚合酶(RdRp)和非结构蛋白6(NSP6)等靶蛋白,对75种美国食品药品监督管理局(FDA)批准的潜在抗病毒药物进行虚拟筛选,结果选出了七种优先结合靶蛋白的药物。此外,分子动力学模拟确定的分子相互作用表明,在这75种药物分子中,儿茶素可有效结合3CLpro、CTSL、S蛋白的受体结合结构域(RBD)、NSP6和核衣壳蛋白。它更易于参与关键的分子相互作用,显示出的结合自由能(ΔGbind)在-5.09千卡/摩尔(CTSL)至-26.09千卡/摩尔(NSP6)范围内。在结合口袋处,儿茶素主要通过疏水相互作用稳定,显示出的范德华能(ΔEvdW)值为-7.59至-37.39千卡/摩尔。因此,儿茶素对多种靶蛋白具有更好的结合亲和力和有利的分子相互作用,这一结构见解表明儿茶素有望作为一种针对COVID-19的多靶点药物进行探索研究。