Suppr超能文献

用于培育富含对健康有益成分谷物的小麦、大麦和燕麦育种

Wheat, Barley, and Oat Breeding for Health Benefit Components in Grain.

作者信息

Loskutov Igor G, Khlestkina Elena K

机构信息

Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia.

出版信息

Plants (Basel). 2021 Jan 3;10(1):86. doi: 10.3390/plants10010086.

Abstract

Cereal grains provide half of the calories consumed by humans. In addition, they contain important compounds beneficial for health. During the last years, a broad spectrum of new cereal grain-derived products for dietary purposes emerged on the global food market. Special breeding programs aimed at cultivars utilizable for these new products have been launched for both the main sources of staple foods (such as rice, wheat, and maize) and other cereal crops (oat, barley, sorghum, millet, etc.). The breeding paradigm has been switched from traditional grain quality indicators (for example, high breadmaking quality and protein content for common wheat or content of protein, lysine, and starch for barley and oat) to more specialized ones (high content of bioactive compounds, vitamins, dietary fibers, and oils, etc.). To enrich cereal grain with functional components while growing plants in contrast to the post-harvesting improvement of staple foods with natural and synthetic additives, the new breeding programs need a source of genes for the improvement of the content of health benefit components in grain. The current review aims to consider current trends and achievements in wheat, barley, and oat breeding for health-benefiting components. The sources of these valuable genes are plant genetic resources deposited in genebanks: landraces, rare crop species, or even wild relatives of cultivated plants. Traditional plant breeding approaches supplemented with marker-assisted selection and genetic editing, as well as high-throughput chemotyping techniques, are exploited to speed up the breeding for the desired genotуpes. Biochemical and genetic bases for the enrichment of the grain of modern cereal crop cultivars with micronutrients, oils, phenolics, and other compounds are discussed, and certain cases of contributions to special health-improving diets are summarized. Correlations between the content of certain bioactive compounds and the resistance to diseases or tolerance to certain abiotic stressors suggest that breeding programs aimed at raising the levels of health-benefiting components in cereal grain might at the same time match the task of developing cultivars adapted to unfavorable environmental conditions.

摘要

谷物提供了人类所消耗热量的一半。此外,它们还含有对健康有益的重要化合物。在过去几年中,全球食品市场上出现了一系列广泛的新型谷物衍生的膳食产品。针对这些新产品可利用的品种,已经针对主要主食来源(如水稻、小麦和玉米)以及其他谷物作物(燕麦、大麦、高粱、小米等)启动了专门的育种计划。育种模式已从传统的谷物品质指标(例如,普通小麦的高制面包品质和蛋白质含量,或大麦和燕麦的蛋白质、赖氨酸和淀粉含量)转向更专业化的指标(生物活性化合物、维生素、膳食纤维和油脂等的高含量)。与用天然和合成添加剂对主食进行收获后改良相比,为了在种植植物时使谷物富含功能成分,新的育种计划需要用于提高谷物中有益健康成分含量的基因来源。本综述旨在探讨小麦、大麦和燕麦在有益健康成分育种方面的当前趋势和成就。这些有价值基因的来源是保存在基因库中的植物遗传资源:地方品种、珍稀作物品种,甚至是栽培植物的野生近缘种。利用传统植物育种方法,并辅以标记辅助选择和基因编辑以及高通量化学分型技术,以加速培育所需的基因型。讨论了现代谷物作物品种籽粒中富含微量营养素、油脂、酚类化合物和其他化合物的生化和遗传基础,并总结了对特殊健康改善饮食有贡献的某些案例。某些生物活性化合物的含量与抗病性或对某些非生物胁迫的耐受性之间的相关性表明,旨在提高谷物中有益健康成分水平的育种计划可能同时符合培育适应不利环境条件品种的任务。

相似文献

1
Wheat, Barley, and Oat Breeding for Health Benefit Components in Grain.
Plants (Basel). 2021 Jan 3;10(1):86. doi: 10.3390/plants10010086.
2
Evaluation of bioactive compounds in cereals. Study of wheat, barley, oat and selected grain products.
Acta Sci Pol Technol Aliment. 2020 Oct-Dec;19(4):405-423. doi: 10.17306/J.AFS.0858.
3
Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition.
Front Genet. 2020 May 29;11:414. doi: 10.3389/fgene.2020.00414. eCollection 2020.
5
Breeding Major Cereal Grains through the Lens of Nutrition Sensitivity.
Mol Plant. 2018 Jan 8;11(1):23-30. doi: 10.1016/j.molp.2017.08.006. Epub 2017 Aug 18.
8
Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India.
J Trace Elem Med Biol. 2009;23(4):281-9. doi: 10.1016/j.jtemb.2009.05.002. Epub 2009 Jun 12.
10
Oats in healthy gluten-free and regular diets: A perspective.
Food Res Int. 2018 Aug;110:3-10. doi: 10.1016/j.foodres.2017.11.031. Epub 2017 Nov 21.

引用本文的文献

2
5
Antitumor Effects of an Anthocyanin-Rich Grain Diet in a Mouse Model of Lewis Lung Carcinoma.
Int J Mol Sci. 2024 May 24;25(11):5727. doi: 10.3390/ijms25115727.
6
Overview of the Metabolite Composition and Antioxidant Capacity of Seven Major and Minor Cereal Crops and Their Milling Fractions.
J Agric Food Chem. 2024 Aug 28;72(34):19197-19218. doi: 10.1021/acs.jafc.4c01312. Epub 2024 May 28.
10
Factors Affecting Incurred Pesticide Extraction in Cereals.
Molecules. 2023 Jul 31;28(15):5774. doi: 10.3390/molecules28155774.

本文引用的文献

2
Conversion of hulled into naked barley by Cas endonuclease-mediated knockout of the NUD gene.
BMC Plant Biol. 2020 Oct 14;20(Suppl 1):255. doi: 10.1186/s12870-020-02454-9.
3
Mycotoxins in Two Hulless Oat and Barley Cultivars Used for Food Purposes.
Foods. 2020 Aug 1;9(8):1037. doi: 10.3390/foods9081037.
4
Melanin formation in barley grain occurs within plastids of pericarp and husk cells.
Sci Rep. 2020 Jan 13;10(1):179. doi: 10.1038/s41598-019-56982-y.
6
Carotenoid Pigment Content in Durum Wheat ( L. var ): An Overview of Quantitative Trait Loci and Candidate Genes.
Front Plant Sci. 2019 Nov 7;10:1347. doi: 10.3389/fpls.2019.01347. eCollection 2019.
7
Membrane sterols and genes of sterol biosynthesis are involved in the response of Triticum aestivum seedlings to cold stress.
Plant Physiol Biochem. 2019 Sep;142:452-459. doi: 10.1016/j.plaphy.2019.07.026. Epub 2019 Jul 31.
10
The Israeli-Palestinian wheat landraces collection: restoration and characterization of lost genetic diversity.
J Sci Food Agric. 2020 Aug 30;100(11):4083-4092. doi: 10.1002/jsfa.9822. Epub 2019 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验