Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States.
J Am Chem Soc. 2021 Jan 20;143(2):849-867. doi: 10.1021/jacs.0c10135. Epub 2021 Jan 8.
The biological global carbon cycle is largely regulated through microbial nickel enzymes, including carbon monoxide dehydrogenase (CODH), acetyl coenzyme A synthase (ACS), and methyl coenzyme M reductase (MCR). These systems are suggested to utilize organometallic intermediates during catalysis, though characterization of these species has remained challenging. We have established a mutant of nickel-substituted azurin as a scaffold upon which to develop protein-based models of enzymatic intermediates, including the organometallic states of ACS. In this work, we report the comprehensive investigation of the = 1/2 Ni-CO and Ni-CH states using pulsed EPR spectroscopy and computational techniques. While the Ni-CO state shows conventional metal-ligand interactions and a classical ligand field, the Ni-CH hyperfine interactions between the methyl protons and the nickel indicate a closer distance than would be expected for an anionic methyl ligand. Structural analysis instead suggests a near-planar methyl ligand that can be best described as cationic. Consistent with this conclusion, the frontier molecular orbitals of the Ni-CH species indicate a ligand-centered LUMO, with a d population on the metal center, rather than the d population expected for a typical metal-alkyl species generated by oxidative addition. Collectively, these data support the presence of an inverted ligand field configuration for the Ni-CH Az species, in which the lowest unoccupied orbital is centered on the ligands rather than the more electropositive metal. These analyses provide the first evidence for an inverted ligand field within a biological system. The functional relevance of the electronic structures of both the Ni-CO and Ni-CH species are discussed in the context of native ACS, and an inverted ligand field is proposed as a mechanism by which to gate reactivity both within ACS and in other thiolate-containing metalloenzymes.
生物全球碳循环在很大程度上受微生物镍酶的调节,包括一氧化碳脱氢酶 (CODH)、乙酰辅酶 A 合酶 (ACS) 和甲基辅酶 M 还原酶 (MCR)。这些系统被认为在催化过程中利用有机金属中间体,尽管这些物种的特征仍然具有挑战性。我们已经建立了镍取代蓝铜蛋白的突变体作为支架,用于开发酶中间体的基于蛋白质的模型,包括 ACS 的有机金属状态。在这项工作中,我们报告了使用脉冲 EPR 光谱和计算技术对 = 1/2 Ni-CO 和 Ni-CH 状态的全面研究。虽然 Ni-CO 状态显示出传统的金属配体相互作用和经典的配体场,但甲基质子和镍之间的 Ni-CH 超精细相互作用表明距离比阴离子甲基配体预期的要近。结构分析反而表明,接近平面的甲基配体可以最好地描述为阳离子。与这一结论一致,Ni-CH 物种的前沿分子轨道表明配体中心的 LUMO,金属中心有 d 电子,而不是典型的金属-烷基物种通过氧化加成产生的 d 电子。这些数据共同支持 Ni-CH Az 物种存在反配位场构型,其中最低未占据轨道位于配体上,而不是更正电性的金属上。这些分析为生物体系中存在反配位场提供了第一个证据。Ni-CO 和 Ni-CH 物种的电子结构的功能相关性在天然 ACS 的背景下进行了讨论,并提出了反配位场作为在 ACS 中和其他含硫醇金属酶中控制反应性的机制。