Suppr超能文献

配体场反转作为控制生物有机反应性的一种机制:使用光谱和计算研究乙酰辅酶 A 合酶的生物化学模型。

Ligand Field Inversion as a Mechanism to Gate Bioorganometallic Reactivity: Investigating a Biochemical Model of Acetyl CoA Synthase Using Spectroscopy and Computation.

机构信息

Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States.

出版信息

J Am Chem Soc. 2021 Jan 20;143(2):849-867. doi: 10.1021/jacs.0c10135. Epub 2021 Jan 8.

Abstract

The biological global carbon cycle is largely regulated through microbial nickel enzymes, including carbon monoxide dehydrogenase (CODH), acetyl coenzyme A synthase (ACS), and methyl coenzyme M reductase (MCR). These systems are suggested to utilize organometallic intermediates during catalysis, though characterization of these species has remained challenging. We have established a mutant of nickel-substituted azurin as a scaffold upon which to develop protein-based models of enzymatic intermediates, including the organometallic states of ACS. In this work, we report the comprehensive investigation of the = 1/2 Ni-CO and Ni-CH states using pulsed EPR spectroscopy and computational techniques. While the Ni-CO state shows conventional metal-ligand interactions and a classical ligand field, the Ni-CH hyperfine interactions between the methyl protons and the nickel indicate a closer distance than would be expected for an anionic methyl ligand. Structural analysis instead suggests a near-planar methyl ligand that can be best described as cationic. Consistent with this conclusion, the frontier molecular orbitals of the Ni-CH species indicate a ligand-centered LUMO, with a d population on the metal center, rather than the d population expected for a typical metal-alkyl species generated by oxidative addition. Collectively, these data support the presence of an inverted ligand field configuration for the Ni-CH Az species, in which the lowest unoccupied orbital is centered on the ligands rather than the more electropositive metal. These analyses provide the first evidence for an inverted ligand field within a biological system. The functional relevance of the electronic structures of both the Ni-CO and Ni-CH species are discussed in the context of native ACS, and an inverted ligand field is proposed as a mechanism by which to gate reactivity both within ACS and in other thiolate-containing metalloenzymes.

摘要

生物全球碳循环在很大程度上受微生物镍酶的调节,包括一氧化碳脱氢酶 (CODH)、乙酰辅酶 A 合酶 (ACS) 和甲基辅酶 M 还原酶 (MCR)。这些系统被认为在催化过程中利用有机金属中间体,尽管这些物种的特征仍然具有挑战性。我们已经建立了镍取代蓝铜蛋白的突变体作为支架,用于开发酶中间体的基于蛋白质的模型,包括 ACS 的有机金属状态。在这项工作中,我们报告了使用脉冲 EPR 光谱和计算技术对 = 1/2 Ni-CO 和 Ni-CH 状态的全面研究。虽然 Ni-CO 状态显示出传统的金属配体相互作用和经典的配体场,但甲基质子和镍之间的 Ni-CH 超精细相互作用表明距离比阴离子甲基配体预期的要近。结构分析反而表明,接近平面的甲基配体可以最好地描述为阳离子。与这一结论一致,Ni-CH 物种的前沿分子轨道表明配体中心的 LUMO,金属中心有 d 电子,而不是典型的金属-烷基物种通过氧化加成产生的 d 电子。这些数据共同支持 Ni-CH Az 物种存在反配位场构型,其中最低未占据轨道位于配体上,而不是更正电性的金属上。这些分析为生物体系中存在反配位场提供了第一个证据。Ni-CO 和 Ni-CH 物种的电子结构的功能相关性在天然 ACS 的背景下进行了讨论,并提出了反配位场作为在 ACS 中和其他含硫醇金属酶中控制反应性的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验