Sharma Ankur, Vaghasiya Kalpesh, Ray Eupa, Gupta Pushpa, Gupta Umesh Datta, Singh Amit Kumar, Verma Rahul Kumar
Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab-160062, India.
National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra-282001, India.
ACS Biomater Sci Eng. 2020 Jul 13;6(7):4126-4140. doi: 10.1021/acsbiomaterials.0c00823. Epub 2020 Jun 25.
Growing rates of tuberculosis (TB) superbugs are alarming, which has hampered the progress made to-date to control this infectious disease, and new drug candidates are few. Epigallocatechin gallate (EGCG), a major polyphenolic compound from green tea extract, shows powerful efficacy against TB bacteria in studies. However, the therapeutic efficacy of the molecule is limited due to poor pharmacokinetics and low bioavailability following oral administration. Aiming to improve the treatment outcomes of EGCG therapy, we investigated whether encapsulation and pulmonary delivery of the molecule would allow the direct targeting of the site of infection without compromising the activity. Microencapsulation of EGCG was realized by scalable spray-freeze-drying (SFD) technology, forming free-flowing micrometer-sized microspheres (epigallocatechin-3-gallate-loaded trehalose microspheres, EGCG-t-MS) of trehalose sugar. These porous microspheres exhibited appropriate aerodynamic parameters and high encapsulation efficiencies. studies demonstrated that EGCG-t-MS exhibited dose- and time-dependent killing of TB bacteria inside mouse macrophages by cellular mechanisms of lysosome acidification and autophagy induction. In a preclinical study on TB-infected Balb/c mice model (4 weeks of infection), we demonstrate that the microencapsulated EGCG, administered 5 days/week for 6 weeks by pulmonary delivery, showed exceptional efficacy compared to oral treatment of free drug. This treatment approach exhibited therapeutic outcomes by resolution of inflammation in the infected lungs and significant reduction ( < 0.05) in bacterial burden (up to ∼2.54 Log CFU) compared to untreated control and orally treated mice groups. No pathological granulomas, lesions, and inflammation were observed in the histopathological investigation, compared to untreated controls. The encouraging results of the study may pave the avenues for future use of EGCG in TB therapeutics by targeted pulmonary delivery and lead to its translational success.
结核病(TB)超级病菌的增长速度令人担忧,这阻碍了迄今为止在控制这种传染病方面所取得的进展,而且新的候选药物很少。表没食子儿茶素没食子酸酯(EGCG)是绿茶提取物中的一种主要多酚化合物,在研究中显示出对结核杆菌有强大的疗效。然而,由于口服给药后药代动力学不佳和生物利用度低,该分子的治疗效果受到限制。为了提高EGCG治疗的效果,我们研究了该分子的封装和肺部给药是否能在不影响其活性的情况下直接靶向感染部位。EGCG的微囊化是通过可扩展的喷雾冷冻干燥(SFD)技术实现的,形成了由海藻糖构成的自由流动的微米级微球(负载表没食子儿茶素-3-没食子酸酯的海藻糖微球,EGCG-t-MS)。这些多孔微球表现出合适的空气动力学参数和高封装效率。研究表明,EGCG-t-MS通过溶酶体酸化和自噬诱导的细胞机制,对小鼠巨噬细胞内的结核杆菌表现出剂量和时间依赖性的杀伤作用。在一项针对感染结核的Balb/c小鼠模型(感染4周)的临床前研究中,我们证明,通过肺部给药,每周5天,持续6周给予微囊化的EGCG,与口服游离药物治疗相比,显示出卓越的疗效。与未治疗的对照组和口服治疗的小鼠组相比,这种治疗方法通过解决感染肺部的炎症和显著降低细菌载量(<0.05)(高达约2.54 Log CFU)展现出治疗效果。与未治疗的对照组相比,在组织病理学研究中未观察到病理性肉芽肿、病变和炎症。该研究令人鼓舞的结果可能为未来通过靶向肺部给药在结核病治疗中使用EGCG铺平道路,并使其转化成功。