Suppr超能文献

基于机器学习算法的蛋白质-蛋白质相互作用界面分类与预测。

Classification and prediction of protein-protein interaction interface using machine learning algorithm.

机构信息

Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.

出版信息

Sci Rep. 2021 Jan 19;11(1):1761. doi: 10.1038/s41598-020-80900-2.

Abstract

Structural insight of the protein-protein interaction (PPI) interface can provide knowledge about the kinetics, thermodynamics and molecular functions of the complex while elucidating its role in diseases and further enabling it as a potential therapeutic target. However, owing to experimental lag in solving protein-protein complex structures, three-dimensional (3D) knowledge of the PPI interfaces can be gained via computational approaches like molecular docking and post-docking analyses. Despite development of numerous docking tools and techniques, success in identification of native like interfaces based on docking score functions is limited. Hence, we employed an in-depth investigation of the structural features of the interface that might successfully delineate native complexes from non-native ones. We identify interface properties, which show statistically significant difference between native and non-native interfaces belonging to homo and hetero, protein-protein complexes. Utilizing these properties, a support vector machine (SVM) based classification scheme has been implemented to differentiate native and non-native like complexes generated using docking decoys. Benchmarking and comparative analyses suggest very good performance of our SVM classifiers. Further, protein interactions, which are proven via experimental findings but not resolved structurally, were subjected to this approach where 3D-models of the complexes were generated and most likely interfaces were predicted. A web server called Protein Complex Prediction by Interface Properties (PCPIP) is developed to predict whether interface of a given protein-protein dimer complex resembles known protein interfaces. The server is freely available at http://www.hpppi.iicb.res.in/pcpip/ .

摘要

蛋白质-蛋白质相互作用(PPI)界面的结构洞察力可以提供有关复合物的动力学、热力学和分子功能的知识,同时阐明其在疾病中的作用,并进一步将其作为潜在的治疗靶点。然而,由于解决蛋白质-蛋白质复合物结构的实验滞后,通过分子对接和对接后分析等计算方法可以获得 PPI 界面的三维(3D)知识。尽管已经开发了许多对接工具和技术,但基于对接评分函数成功识别天然类似界面的成功率有限。因此,我们深入研究了界面的结构特征,这些特征可能成功地区分天然复合物和非天然复合物。我们确定了界面特性,这些特性在属于同型和异型的天然和非天然界面之间表现出统计学上的显著差异,蛋白质-蛋白质复合物。利用这些特性,我们实施了基于支持向量机(SVM)的分类方案,以区分使用对接诱饵生成的天然和非天然类似复合物。基准测试和比较分析表明,我们的 SVM 分类器表现非常出色。此外,我们还对经过实验验证但尚未通过结构解析的蛋白质相互作用进行了这种方法的处理,生成了复合物的 3D 模型,并预测了最有可能的界面。我们开发了一个名为“通过界面特性预测蛋白质复合物(PCPIP)”的网络服务器,用于预测给定蛋白质-蛋白质二聚体复合物的界面是否类似于已知的蛋白质界面。该服务器可免费在 http://www.hpppi.iicb.res.in/pcpip/ 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75b/7815773/d729fe5e5b12/41598_2020_80900_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验