Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Acc Chem Res. 2021 Feb 16;54(4):988-1000. doi: 10.1021/acs.accounts.0c00694. Epub 2021 Jan 29.
In recent years, the development of light-driven reactions has contributed numerous advances in synthetic organic chemistry. A particularly active research area combines photoredox catalysis with nickel catalysis to accomplish otherwise inaccessible cross-coupling reactions. In these reactions, the photoredox catalyst absorbs light to generate an electronically excited charge-transfer state that can engage in electron or energy transfer with a substrate and the nickel catalyst. Our group questioned whether photoinduced activation of the nickel catalyst itself could also contribute new approaches to cross-coupling. Over the past 5 years, we have sought to advance this hypothesis for the development of a suite of mild and site-selective C(sp)-H cross-coupling reactions with chloride-containing coupling partners via photoelimination of a Ni-Cl bond.On the basis of a report from the Nocera laboratory, we reasoned that photolysis of a Ni(III) aryl chloride species, generated by single-electron oxidation of a typical Ni(II) intermediate in cross-coupling, might allow for the catalytic generation of chlorine atoms. Combining this with the ability of Ni(II) to accept alkyl radicals, we hypothesized that photocatalytically generated chlorine atoms could mediate hydrogen atom transfer (HAT) with C(sp)-H bonds to generate a substrate-derived alkyl radical that is captured by the Ni center in cross-coupling. A photoredox catalyst was envisioned to promote the necessary single-electron oxidation and reduction of the Ni catalyst to facilitate an overall redox-neutral process. Overall, this strategy would offer a visible-light-driven mechanism for chlorine radical formation enabled by the sequential capture of two photons.As an initial demonstration, we developed a Ni/photoredox-catalyzed α-oxy C(sp)-H arylation of cyclic and acyclic ethers. This method was extended to a mild formylation of abundant and complex aryl chlorides through selective 2-functionalization of 1,3-dioxolane. Seeking to develop a suite of reactions that introduce carbon at all different oxidation states, we explored C(sp)-H cross-coupling with trimethyl orthoformate, a common laboratory solvent. We found that trimethyl orthoformate serves as a source of methyl radical for a methylation reaction via β-scission from a tertiary radical generated upon chlorine-mediated HAT. Since chlorine radical is capable of abstracting unactivated C(sp)-H bonds, our efforts have also been directed at cross-coupling with a range of feedstock chemicals, such as alkanes and toluenes, along with late-stage intermediates, using chloroformates as coupling partners. Overall, this platform enables access to valuable synthetic transformations with (hetero)aryl chlorides, which despite being the most ubiquitous and inexpensive aryl halide coupling partners, are rarely reactive in Ni/photoredox catalysis.Little is known about the photophysics and photochemistry of organometallic Ni complexes relevant to cross-coupling. We have conducted mechanistic investigations, including computational, spectroscopic, emission quenching, and stoichiometric oxidation studies, of Ni(II) aryl halide complexes common to Ni/photoredox reactions. These studies indicate that chlorine radical generation from excited Ni(III) is operative in the described C(sp)-H functionalization methods. More generally, the studies illustrate that the photochemistry of cross-coupling catalysts cannot be ignored in metallaphotoredox reactions. We anticipate that further mechanistic understanding should facilitate new catalyst design and lead to the development of new synthetic methods.
近年来,光驱动反应的发展为合成有机化学做出了许多贡献。一个特别活跃的研究领域是将光氧化还原催化与镍催化结合起来,以实现原本无法进行的交叉偶联反应。在这些反应中,光氧化还原催化剂吸收光产生一个电子激发的电荷转移态,它可以与底物和镍催化剂进行电子或能量转移。我们小组质疑镍催化剂本身的光诱导激活是否也可以为交叉偶联提供新的方法。在过去的 5 年里,我们一直在寻求通过光消除 Ni-Cl 键来发展一系列温和且选择性的 C(sp)-H 交叉偶联反应,这些反应的偶联伙伴是含氯化合物。基于 Nocera 实验室的一份报告,我们推断,通过交叉偶联中典型的 Ni(II)中间体的单电子氧化生成的 Ni(III)芳基氯化物物种的光解,可能允许催化生成氯原子。将这一点与 Ni(II)接受烷基自由基的能力结合起来,我们假设光催化生成的氯原子可以与 C(sp)-H 键进行氢原子转移 (HAT),生成一个由 Ni 中心捕获的、由底物衍生的烷基自由基。光氧化还原催化剂被设想为促进 Ni 催化剂所需的单电子氧化和还原,以促进整体氧化还原中性过程。总的来说,这种策略将为氯自由基的形成提供一种可见光驱动的机制,该机制由两个光子的顺序捕获来实现。
作为初步的证明,我们开发了 Ni/光氧化还原催化的环状和无环醚的α-氧基 C(sp)-H 芳基化。该方法通过 1,3-二恶烷的选择性 2-官能化扩展到了丰富和复杂的芳基氯的温和形式化。为了开发一系列引入所有不同氧化态碳的反应,我们探索了三甲基原甲酸酯与三甲基原甲酸酯的 C(sp)-H 交叉偶联,三甲基原甲酸酯是一种常见的实验室溶剂。我们发现,三甲基原甲酸酯通过在氯介导的 HAT 后生成的叔自由基的β断裂,作为甲基自由基的来源,用于甲基化反应。由于氯自由基能够夺取未激活的 C(sp)-H 键,我们的努力也一直指向与一系列原料化学品(如烷烃和甲苯)以及作为偶联伙伴的氯甲酸酯的交叉偶联,以获得各种后期中间体。总的来说,该平台可以获得(杂)芳基氯化物的有价值的合成转化,尽管芳基氯化物是最普遍和最便宜的芳基卤化物偶联伙伴,但在 Ni/光氧化还原催化中很少具有反应性。
与交叉偶联相关的有机金属 Ni 配合物的光物理和光化学知之甚少。我们已经对 Ni/光氧化还原反应中常见的 Ni(II)芳基卤化物配合物进行了包括计算、光谱、发光猝灭和化学计量氧化研究在内的机制研究。这些研究表明,从激发态 Ni(III)生成氯自由基在描述的 C(sp)-H 功能化方法中是可行的。更一般地说,这些研究表明,在金属光氧化还原反应中不能忽视交叉偶联催化剂的光化学。我们预计,进一步的机制理解应该有助于新的催化剂设计,并导致新的合成方法的发展。