Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA.
Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.
Free Radic Biol Med. 2021 Mar;165:127-136. doi: 10.1016/j.freeradbiomed.2021.01.041. Epub 2021 Jan 29.
Diabetic Retinopathy (DR) is a major cause of visual dysfunction, yet much remains unknown regarding the specific molecular events that contribute to diabetes-induced retinal pathophysiology. Herein, we review the impact of oxidative stress on DR, and explore evidence that supports a key role for the stress response protein regulated in development and DNA damage (REDD1) in the development of diabetes-induced oxidative stress and functional defects in vision. It is well established that REDD1 mediates the cellular response to a number of diverse stressors through repression of the central metabolic regulator known as mechanistic target of rapamycin complex 1 (mTORC1). A growing body of evidence also supports that REDD1 acts independent of mTORC1 to promote oxidative stress by both enhancing the production of reactive oxygen species and suppressing the antioxidant response. Collectively, there is strong preclinical data to support a key role for REDD1 in the development and progression of retinal complications caused by diabetes. Furthermore, early proof-of-concept clinical trials have found a degree of success in combating ischemic retinal disease through intravitreal delivery of an siRNA targeting the REDD1 mRNA. Overall, REDD1-associated signaling represents an intriguing target for novel clinical therapies that go beyond addressing the symptoms of diabetes by targeting the underlying molecular mechanisms that contribute to DR.
糖尿病视网膜病变(DR)是视力障碍的主要原因,但对于导致糖尿病性视网膜病理生理学的特定分子事件,仍知之甚少。本文综述了氧化应激对 DR 的影响,并探讨了应激反应蛋白调节发育和 DNA 损伤(REDD1)在糖尿病诱导的氧化应激和视力功能缺陷发展中的关键作用的证据。众所周知,REDD1 通过抑制中央代谢调节剂雷帕霉素复合物 1(mTORC1)来介导细胞对多种不同应激源的反应。越来越多的证据还支持 REDD1 通过增强活性氧的产生和抑制抗氧化反应来独立于 mTORC1 发挥作用,从而促进氧化应激。总的来说,有强有力的临床前数据支持 REDD1 在糖尿病引起的视网膜并发症的发展和进展中起关键作用。此外,早期的概念验证临床试验发现,通过玻璃体内递送靶向 REDD1 mRNA 的 siRNA,在治疗缺血性视网膜疾病方面取得了一定的成功。总的来说,与 REDD1 相关的信号转导代表了一种有趣的新型临床治疗靶点,它不仅通过针对导致 DR 的潜在分子机制来解决糖尿病的症状。