Suppr超能文献

应激反应蛋白 REDD1 作为糖尿病性视网膜病变中氧化应激的一个因果因素。

The stress response protein REDD1 as a causal factor for oxidative stress in diabetic retinopathy.

机构信息

Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA.

Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.

出版信息

Free Radic Biol Med. 2021 Mar;165:127-136. doi: 10.1016/j.freeradbiomed.2021.01.041. Epub 2021 Jan 29.

Abstract

Diabetic Retinopathy (DR) is a major cause of visual dysfunction, yet much remains unknown regarding the specific molecular events that contribute to diabetes-induced retinal pathophysiology. Herein, we review the impact of oxidative stress on DR, and explore evidence that supports a key role for the stress response protein regulated in development and DNA damage (REDD1) in the development of diabetes-induced oxidative stress and functional defects in vision. It is well established that REDD1 mediates the cellular response to a number of diverse stressors through repression of the central metabolic regulator known as mechanistic target of rapamycin complex 1 (mTORC1). A growing body of evidence also supports that REDD1 acts independent of mTORC1 to promote oxidative stress by both enhancing the production of reactive oxygen species and suppressing the antioxidant response. Collectively, there is strong preclinical data to support a key role for REDD1 in the development and progression of retinal complications caused by diabetes. Furthermore, early proof-of-concept clinical trials have found a degree of success in combating ischemic retinal disease through intravitreal delivery of an siRNA targeting the REDD1 mRNA. Overall, REDD1-associated signaling represents an intriguing target for novel clinical therapies that go beyond addressing the symptoms of diabetes by targeting the underlying molecular mechanisms that contribute to DR.

摘要

糖尿病视网膜病变(DR)是视力障碍的主要原因,但对于导致糖尿病性视网膜病理生理学的特定分子事件,仍知之甚少。本文综述了氧化应激对 DR 的影响,并探讨了应激反应蛋白调节发育和 DNA 损伤(REDD1)在糖尿病诱导的氧化应激和视力功能缺陷发展中的关键作用的证据。众所周知,REDD1 通过抑制中央代谢调节剂雷帕霉素复合物 1(mTORC1)来介导细胞对多种不同应激源的反应。越来越多的证据还支持 REDD1 通过增强活性氧的产生和抑制抗氧化反应来独立于 mTORC1 发挥作用,从而促进氧化应激。总的来说,有强有力的临床前数据支持 REDD1 在糖尿病引起的视网膜并发症的发展和进展中起关键作用。此外,早期的概念验证临床试验发现,通过玻璃体内递送靶向 REDD1 mRNA 的 siRNA,在治疗缺血性视网膜疾病方面取得了一定的成功。总的来说,与 REDD1 相关的信号转导代表了一种有趣的新型临床治疗靶点,它不仅通过针对导致 DR 的潜在分子机制来解决糖尿病的症状。

相似文献

1
The stress response protein REDD1 as a causal factor for oxidative stress in diabetic retinopathy.
Free Radic Biol Med. 2021 Mar;165:127-136. doi: 10.1016/j.freeradbiomed.2021.01.041. Epub 2021 Jan 29.
2
Deletion of the Akt/mTORC1 Repressor REDD1 Prevents Visual Dysfunction in a Rodent Model of Type 1 Diabetes.
Diabetes. 2018 Jan;67(1):110-119. doi: 10.2337/db17-0728. Epub 2017 Oct 26.
6
Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism.
Am J Physiol Endocrinol Metab. 2016 Jul 1;311(1):E157-74. doi: 10.1152/ajpendo.00059.2016. Epub 2016 May 17.
7
Stress response protein REDD1 promotes diabetes-induced retinal inflammation by sustaining canonical NF-κB signaling.
J Biol Chem. 2022 Dec;298(12):102638. doi: 10.1016/j.jbc.2022.102638. Epub 2022 Oct 26.
8
The stress-responsive protein REDD1 and its pathophysiological functions.
Exp Mol Med. 2023 Sep;55(9):1933-1944. doi: 10.1038/s12276-023-01056-3. Epub 2023 Sep 1.
10
Is REDD1 a metabolic double agent? Lessons from physiology and pathology.
Am J Physiol Cell Physiol. 2020 Nov 1;319(5):C807-C824. doi: 10.1152/ajpcell.00340.2020. Epub 2020 Sep 2.

引用本文的文献

1
Identification and validation of integrated stress-response-related genes as biomarkers for age-related macular degeneration.
Front Mol Biosci. 2025 Jul 16;12:1583237. doi: 10.3389/fmolb.2025.1583237. eCollection 2025.
2
Identification of potential anti aging drugs and targets in chronic kidney disease.
Sci Rep. 2025 May 3;15(1):15545. doi: 10.1038/s41598-025-96985-6.
3
Deletion of the stress response protein REDD1 prevents sodium iodate-induced RPE damage and photoreceptor loss.
Geroscience. 2025 Apr;47(2):1789-1803. doi: 10.1007/s11357-024-01362-2. Epub 2024 Oct 5.
6
Unraveling DDIT4 in the VDR-mTOR pathway: a novel target for drug discovery in diabetic kidney disease.
Front Pharmacol. 2024 Mar 19;15:1344113. doi: 10.3389/fphar.2024.1344113. eCollection 2024.
7
Mechanisms driving fasting-induced protection from genotoxic injury in the small intestine.
Am J Physiol Gastrointest Liver Physiol. 2024 May 1;326(5):G504-G524. doi: 10.1152/ajpgi.00126.2023. Epub 2024 Feb 13.
8
Alleviate oxidative stress in diabetic retinopathy: antioxidant therapeutic strategies.
Redox Rep. 2023 Dec;28(1):2272386. doi: 10.1080/13510002.2023.2272386. Epub 2023 Dec 2.
9
The stress-responsive protein REDD1 and its pathophysiological functions.
Exp Mol Med. 2023 Sep;55(9):1933-1944. doi: 10.1038/s12276-023-01056-3. Epub 2023 Sep 1.
10
Phytocannabinoids as Potential Multitargeting Neuroprotectants in Alzheimer's Disease.
Curr Drug Res Rev. 2024;16(2):94-110. doi: 10.2174/2589977515666230502104021.

本文引用的文献

3
The stress response protein REDD1 promotes diabetes-induced oxidative stress in the retina by Keap1-independent Nrf2 degradation.
J Biol Chem. 2020 May 22;295(21):7350-7361. doi: 10.1074/jbc.RA120.013093. Epub 2020 Apr 15.
6
Nrf2 Suppression Delays Diabetic Wound Healing Through Sustained Oxidative Stress and Inflammation.
Front Pharmacol. 2019 Sep 20;10:1099. doi: 10.3389/fphar.2019.01099. eCollection 2019.
8
Activators and Inhibitors of NRF2: A Review of Their Potential for Clinical Development.
Oxid Med Cell Longev. 2019 Jul 14;2019:9372182. doi: 10.1155/2019/9372182. eCollection 2019.
9
REDD1 Activates a ROS-Generating Feedback Loop in the Retina of Diabetic Mice.
Invest Ophthalmol Vis Sci. 2019 May 1;60(6):2369-2379. doi: 10.1167/iovs.19-26606.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验