Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
Department of Chemistry, Tamralipta Mahavidyalaya, Purba Medinipur 721636, India.
J Phys Chem A. 2021 Feb 25;125(7):1490-1504. doi: 10.1021/acs.jpca.0c10518. Epub 2021 Feb 10.
The absence of d-orbital electrons or presence of full-filled d-orbital electrons in metal ions is a well-known Achilles' heel problem for the detection of these metal ions by a simple UV-visible study. For this reason, detection of metal ions such as Al with no d-orbital electrons or Zn with filled d-orbital electrons is a challenging task. Herein, we report a 2-naphthol-based fluorescent probe [1-(()-(()-(5-bromo-2-hydroxybenzylidene)hydrazono)methyl)naphthalen-2-ol] () that has been used to sense and discriminate Al and Zn via solvent regulation. The probe exhibits excellent selectivity and swift sensitivity toward Al in MeOH-water (9:1, v/v) and toward Zn in dimethyl sulfoxide (DMSO)-water (9:1, v/v) among various metal ions. The respective detection limit is found to be 9.78 and 3.65 μM. The sensing mechanism is attributed to multiple processes, viz., the inhibition of photo-induced electron transfer (PET) along with the introduction of chelation-enhanced emission (CHEF) and excited-state intramolecular proton transfer (ESIPT) inhibition, which are experimentally well verified by UV-vis absorption spectroscopy, emission spectroscopy, and NMR spectroscopy. The probe shows aggregation-induced emissive (AIE) response in ≥70% aqueous media as well as in the solid state. The experimental results are well corroborated by time-resolved photoluminescence (TRPL) and density functional theory (DFT) calculations. An advanced-level OR-AND-NOT logic gate has been constructed from a different chemical combinational input and emission output. The reversible recognition of both Al in MeOH-water (9:1, v/v) and Zn in DMSO-water (9:1, v/v) is also ascertained in the presence of NaEDTA, enabling the construction of a molecular memory device. The probe also detects intracellular Al/Zn ions in Hela cells. Altogether, our fundamental findings will pave the way for designing and synthesis of unique chemosensors that could be used for cell imaging studies as well as constructing molecular logic gates.
金属离子缺乏 d 轨道电子或 d 轨道电子完全充满是一个众所周知的问题,这使得通过简单的紫外-可见研究来检测这些金属离子变得极具挑战性。出于这个原因,检测没有 d 轨道电子的金属离子,如 Al,或填充 d 轨道电子的 Zn,是一项具有挑战性的任务。在此,我们报告了一种基于 2-萘酚的荧光探针 [1-(((()-(5-溴-2-羟基苯亚甲基)腙基)甲基)萘-2-醇](),它已被用于通过溶剂调节来感应和区分 Al 和 Zn。该探针在 MeOH-水(9:1,v/v)中对 Al 表现出出色的选择性和快速灵敏度,在 DMSO-水(9:1,v/v)中对 Zn 表现出出色的选择性和快速灵敏度,在各种金属离子中。各自的检测限分别为 9.78 和 3.65 μM。传感机制归因于多个过程,即光诱导电子转移(PET)的抑制以及螯合增强发射(CHEF)和激发态分子内质子转移(ESIPT)的抑制,这些过程通过紫外-可见吸收光谱、发射光谱和 NMR 光谱得到了很好的验证。探针在≥70%的水介质中和固态中均表现出聚集诱导发光(AIE)响应。时间分辨光致发光(TRPL)和密度泛函理论(DFT)计算很好地证实了实验结果。从不同的化学组合输入和发射输出构建了一个高级 OR-AND-NOT 逻辑门。在存在 NaEDTA 的情况下,还确定了 MeOH-水(9:1,v/v)中 Al 的可逆识别和 DMSO-水(9:1,v/v)中 Zn 的可逆识别,从而能够构建分子存储设备。探针还可以检测 Hela 细胞内的 Al/Zn 离子。总之,我们的基础研究结果将为设计和合成独特的化学传感器铺平道路,这些传感器可用于细胞成像研究以及构建分子逻辑门。