Yang Yi, Yang Jiancheng, Shen Lan, Chen Jiajun, Xia Liliang, Ni Bingbing, Ge Liang, Wang Ying, Lu Shun
Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University Shanghai, China.
Department of Electronic Engineering, Shanghai Jiao Tong University Shanghai, China.
Am J Transl Res. 2021 Feb 15;13(2):743-756. eCollection 2021.
Only 20% NSCLC patients benefit from immunotherapy with a durable response. Current biomarkers are limited by the availability of samples and do not accurately predict who will benefit from immunotherapy. To develop a unified deep learning model to integrate multimodal serial information from CT with laboratory and baseline clinical information. We retrospectively analyzed 1633 CT scans and 3414 blood samples from 200 advanced stage NSCLC patients who received single anti-PD-1/PD-L1 agent between April 2016 and December 2019. Multidimensional information, including serial radiomics, laboratory data and baseline clinical data, was used to develop and validate deep learning models to identify immunotherapy responders and nonresponders. A Simple Temporal Attention (SimTA) module was developed to process asynchronous time-series imaging and laboratory data. Using cross-validation, the 90-day deep learning-based predicting model showed a good performance in distinguishing responders from nonresponders, with an area under the curve (AUC) of 0.80 (95% CI: 0.74-0.86). Before immunotherapy, we stratified the patients into high- and low-risk nonresponders using the model. The low-risk group had significantly longer progression-free survival (PFS) (8.4 months, 95% CI: 5.49-11.31 . 1.5 months, 95% CI: 1.29-1.71; HR 3.14, 95% CI: 2.27-4.33; log-rank test, <0.01) and overall survival (OS) (26.7 months, 95% CI: 18.76-34.64 . 8.6 months, 95% CI: 4.55-12.65; HR 2.46, 95% CI: 1.73-3.51; log-rank test, <0.01) than the high-risk group. An exploratory analysis of 93 patients with stable disease (SD) [after first efficacy assessment according to the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1] also showed that the 90-day model had a good prediction of survival and low-risk patients had significantly longer PFS (11.1 months, 95% CI: 10.24-11.96 . 3.3 months, 95% CI: 0.34-6.26; HR 2.93, 95% CI: 1.69-5.10; log-rank test, P<0.01) and OS (31.7 months, 95% CI: 23.64-39.76 . 17.2 months, 95% CI: 7.22-27.18; HR 2.22, 95% CI: 1.17-4.20; log-rank test, =0.01) than high-risk patients. In conclusion, the SimTA-based multi-omics serial deep learning provides a promising methodology for predicting response of advanced NSCLC patients to anti-PD-1/PD-L1 monotherapy. Moreover, our model could better differentiate survival benefit among SD patients than the traditional RECIST evaluation method.
只有20%的非小细胞肺癌(NSCLC)患者能从免疫治疗中获得持久缓解。目前的生物标志物受样本可用性限制,无法准确预测谁能从免疫治疗中获益。为开发一个统一的深度学习模型,整合来自CT的多模态序列信息与实验室及基线临床信息。我们回顾性分析了2016年4月至2019年12月期间接受单一抗PD-1/PD-L1药物治疗的200例晚期NSCLC患者的1633份CT扫描和3414份血液样本。利用包括序列影像组学、实验室数据和基线临床数据在内的多维信息,开发并验证深度学习模型,以识别免疫治疗的应答者和无应答者。开发了一个简单时间注意力(SimTA)模块来处理异步时间序列成像和实验室数据。通过交叉验证,基于深度学习的90天预测模型在区分应答者和无应答者方面表现良好,曲线下面积(AUC)为0.80(95%CI:0.74 - 0.86)。在免疫治疗前,我们使用该模型将患者分为高风险和低风险无应答者。低风险组的无进展生存期(PFS)显著更长(8.4个月,95%CI:5.49 - 11.31对1.5个月,95%CI:1.29 - 1.71;HR 3.14,95%CI:2.27 - 4.33;对数秩检验,<0.01),总生存期(OS)也显著更长(26.7个月,95%CI:18.76 - 34.64对8.6个月,95%CI:4.55 - 12.65;HR 2.46,95%CI:1.73 - 3.51;对数秩检验,<0.01),高于高风险组。对93例疾病稳定(SD)患者(根据实体瘤疗效评价标准(RECIST)1.1进行首次疗效评估后)的探索性分析也表明,90天模型对生存期有良好预测,低风险患者的PFS显著更长(11.1个月,95%CI:10.24 - 11.96对3.3个月,95%CI:0.34 - 6.26;HR 2.93,95%CI:1.69 - 5.10;对数秩检验,P<0.01),OS也显著更长(31.7个月,95%CI:23.64 - 39.76对17.2个月,95%CI:7.22 - 27.18;HR 2.22,95%CI:1.17 - 4.20;对数秩检验,=0.01),高于高风险患者。总之,基于SimTA的多组学序列深度学习为预测晚期NSCLC患者对抗PD-1/PD-L1单药治疗的反应提供了一种有前景的方法。此外,我们的模型在区分SD患者的生存获益方面比传统的RECIST评估方法表现更好。