Suppr超能文献

VR-Caps:胶囊内镜的虚拟环境。

VR-Caps: A Virtual Environment for Capsule Endoscopy.

机构信息

Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.

Department of Computer Engineering, Bogazici University, Istanbul, Turkey.

出版信息

Med Image Anal. 2021 May;70:101990. doi: 10.1016/j.media.2021.101990. Epub 2021 Feb 6.

Abstract

Current capsule endoscopes and next-generation robotic capsules for diagnosis and treatment of gastrointestinal diseases are complex cyber-physical platforms that must orchestrate complex software and hardware functions. The desired tasks for these systems include visual localization, depth estimation, 3D mapping, disease detection and segmentation, automated navigation, active control, path realization and optional therapeutic modules such as targeted drug delivery and biopsy sampling. Data-driven algorithms promise to enable many advanced functionalities for capsule endoscopes, but real-world data is challenging to obtain. Physically-realistic simulations providing synthetic data have emerged as a solution to the development of data-driven algorithms. In this work, we present a comprehensive simulation platform for capsule endoscopy operations and introduce VR-Caps, a virtual active capsule environment that simulates a range of normal and abnormal tissue conditions (e.g., inflated, dry, wet etc.) and varied organ types, capsule endoscope designs (e.g., mono, stereo, dual and 360 camera), and the type, number, strength, and placement of internal and external magnetic sources that enable active locomotion. VR-Caps makes it possible to both independently or jointly develop, optimize, and test medical imaging and analysis software for the current and next-generation endoscopic capsule systems. To validate this approach, we train state-of-the-art deep neural networks to accomplish various medical image analysis tasks using simulated data from VR-Caps and evaluate the performance of these models on real medical data. Results demonstrate the usefulness and effectiveness of the proposed virtual platform in developing algorithms that quantify fractional coverage, camera trajectory, 3D map reconstruction, and disease classification. All of the code, pre-trained weights and created 3D organ models of the virtual environment with detailed instructions how to setup and use the environment are made publicly available at https://github.com/CapsuleEndoscope/VirtualCapsuleEndoscopy and a video demonstration can be seen in the supplementary videos (Video-I).

摘要

当前用于诊断和治疗胃肠道疾病的胶囊内窥镜和下一代机器人胶囊是复杂的网络物理平台,必须协调复杂的软件和硬件功能。这些系统的期望任务包括视觉定位、深度估计、3D 映射、疾病检测和分割、自动导航、主动控制、路径实现以及可选的治疗模块,如靶向药物输送和活检采样。数据驱动的算法有望为胶囊内窥镜实现许多高级功能,但实际数据难以获取。提供合成数据的物理逼真模拟已成为开发数据驱动算法的一种解决方案。在这项工作中,我们提出了一个用于胶囊内窥镜操作的综合模拟平台,并介绍了 VR-Caps,这是一个虚拟主动胶囊环境,模拟了一系列正常和异常组织条件(例如,充气、干燥、湿润等)以及不同的器官类型、胶囊内窥镜设计(例如,单目、双目、双目和 360 度相机),以及内部和外部磁源的类型、数量、强度和位置,这些磁源可以实现主动运动。VR-Caps 使得可以独立或联合开发、优化和测试当前和下一代内窥镜胶囊系统的医学成像和分析软件。为了验证这种方法,我们使用来自 VR-Caps 的模拟数据训练最先进的深度神经网络来完成各种医学图像分析任务,并在真实医学数据上评估这些模型的性能。结果表明,所提出的虚拟平台在开发用于量化分数覆盖、相机轨迹、3D 地图重建和疾病分类的算法方面是有用且有效的。所有代码、预训练权重和创建的虚拟环境的 3D 器官模型以及有关如何设置和使用环境的详细说明都可以在 https://github.com/CapsuleEndoscope/VirtualCapsuleEndoscopy 上公开获取,并且可以在补充视频 (Video-I) 中看到视频演示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验