Suppr超能文献

使用多损失重新平衡网络从单目内窥镜图像序列联合估计深度和运动。

Joint estimation of depth and motion from a monocular endoscopy image sequence using a multi-loss rebalancing network.

作者信息

Liu Shiyuan, Fan Jingfan, Song Dengpan, Fu Tianyu, Lin Yucong, Xiao Deqiang, Song Hong, Wang Yongtian, Yang Jian

机构信息

Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.

School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.

出版信息

Biomed Opt Express. 2022 Apr 11;13(5):2707-2727. doi: 10.1364/BOE.457475. eCollection 2022 May 1.

Abstract

Building an in vivo three-dimensional (3D) surface model from a monocular endoscopy is an effective technology to improve the intuitiveness and precision of clinical laparoscopic surgery. This paper proposes a multi-loss rebalancing-based method for joint estimation of depth and motion from a monocular endoscopy image sequence. The feature descriptors are used to provide monitoring signals for the depth estimation network and motion estimation network. The epipolar constraints of the sequence frame is considered in the neighborhood spatial information by depth estimation network to enhance the accuracy of depth estimation. The reprojection information of depth estimation is used to reconstruct the camera motion by motion estimation network with a multi-view relative pose fusion mechanism. The relative response loss, feature consistency loss, and epipolar consistency loss function are defined to improve the robustness and accuracy of the proposed unsupervised learning-based method. Evaluations are implemented on public datasets. The error of motion estimation in three scenes decreased by 42.1%,53.6%, and 50.2%, respectively. And the average error of 3D reconstruction is 6.456 ± 1.798mm. This demonstrates its capability to generate reliable depth estimation and trajectory reconstruction results for endoscopy images and meaningful applications in clinical.

摘要

从单目内窥镜构建体内三维(3D)表面模型是提高临床腹腔镜手术直观性和精确性的有效技术。本文提出了一种基于多损失重平衡的方法,用于从单目内窥镜图像序列联合估计深度和运动。特征描述符用于为深度估计网络和运动估计网络提供监测信号。深度估计网络在邻域空间信息中考虑序列帧的极线约束,以提高深度估计的准确性。深度估计的重投影信息由运动估计网络利用多视图相对姿态融合机制来重建相机运动。定义了相对响应损失、特征一致性损失和极线一致性损失函数,以提高所提出的基于无监督学习方法的鲁棒性和准确性。在公共数据集上进行了评估。三个场景中运动估计的误差分别降低了42.1%、53.6%和50.2%。三维重建的平均误差为6.456±1.798mm。这证明了其为内窥镜图像生成可靠的深度估计和轨迹重建结果的能力以及在临床上的有意义应用。

相似文献

1
Joint estimation of depth and motion from a monocular endoscopy image sequence using a multi-loss rebalancing network.
Biomed Opt Express. 2022 Apr 11;13(5):2707-2727. doi: 10.1364/BOE.457475. eCollection 2022 May 1.
2
Pose estimation via structure-depth information from monocular endoscopy images sequence.
Biomed Opt Express. 2023 Dec 22;15(1):460-478. doi: 10.1364/BOE.498262. eCollection 2024 Jan 1.
3
Self-supervised monocular depth estimation for gastrointestinal endoscopy.
Comput Methods Programs Biomed. 2023 Aug;238:107619. doi: 10.1016/j.cmpb.2023.107619. Epub 2023 May 19.
4
SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
Comput Methods Programs Biomed. 2018 May;158:135-146. doi: 10.1016/j.cmpb.2018.02.006. Epub 2018 Feb 8.
5
Monocular Depth Estimation via Self-Supervised Self-Distillation.
Sensors (Basel). 2024 Jun 24;24(13):4090. doi: 10.3390/s24134090.
6
Monocular endoscopy images depth estimation with multi-scale residual fusion.
Comput Biol Med. 2024 Feb;169:107850. doi: 10.1016/j.compbiomed.2023.107850. Epub 2023 Dec 17.
9
EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos.
Med Image Anal. 2021 Jul;71:102058. doi: 10.1016/j.media.2021.102058. Epub 2021 Apr 15.
10
Masked GAN for Unsupervised Depth and Pose Prediction With Scale Consistency.
IEEE Trans Neural Netw Learn Syst. 2021 Dec;32(12):5392-5403. doi: 10.1109/TNNLS.2020.3044181. Epub 2021 Nov 30.

引用本文的文献

1
Where do we stand in AI for endoscopic image analysis? Deciphering gaps and future directions.
NPJ Digit Med. 2022 Dec 20;5(1):184. doi: 10.1038/s41746-022-00733-3.

本文引用的文献

1
Self-Supervised monocular depth and ego-Motion estimation in endoscopy: Appearance flow to the rescue.
Med Image Anal. 2022 Apr;77:102338. doi: 10.1016/j.media.2021.102338. Epub 2021 Dec 25.
2
Unsupervised learning of depth estimation from imperfect rectified stereo laparoscopic images.
Comput Biol Med. 2022 Jan;140:105109. doi: 10.1016/j.compbiomed.2021.105109. Epub 2021 Dec 3.
3
Visually Navigated Bronchoscopy using three cycle-Consistent generative adversarial network for depth estimation.
Med Image Anal. 2021 Oct;73:102164. doi: 10.1016/j.media.2021.102164. Epub 2021 Jul 18.
4
Motion-based camera localization system in colonoscopy videos.
Med Image Anal. 2021 Oct;73:102180. doi: 10.1016/j.media.2021.102180. Epub 2021 Jul 15.
5
EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos.
Med Image Anal. 2021 Jul;71:102058. doi: 10.1016/j.media.2021.102058. Epub 2021 Apr 15.
6
VR-Caps: A Virtual Environment for Capsule Endoscopy.
Med Image Anal. 2021 May;70:101990. doi: 10.1016/j.media.2021.101990. Epub 2021 Feb 6.
7
Whole Stomach 3D Reconstruction and Frame Localization From Monocular Endoscope Video.
IEEE J Transl Eng Health Med. 2019 Oct 18;7:3300310. doi: 10.1109/JTEHM.2019.2946802. eCollection 2019.
8
A Real-Time 3D Laparoscopic Imaging System: Design, Method, and Validation.
IEEE Trans Biomed Eng. 2020 Sep;67(9):2683-2695. doi: 10.1109/TBME.2020.2968488. Epub 2020 Jan 21.
9
Simultaneous Optimization of Patient-Image Registration and Hand-Eye Calibration for Accurate Augmented Reality in Surgery.
IEEE Trans Biomed Eng. 2020 Sep;67(9):2669-2682. doi: 10.1109/TBME.2020.2967802. Epub 2020 Jan 20.
10
3D Reconstruction of Whole Stomach from Endoscope Video Using Structure-from-Motion.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3900-3904. doi: 10.1109/EMBC.2019.8857964.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验